精英家教网 > 高中数学 > 题目详情
已知椭圆C的中心在坐标原点,焦点在x轴上,离心率.直线l:x-2y+2=0与椭圆C相交于E、F两点,且
(1)求椭圆C的方程;
(2)点P(-2,0),A、B为椭圆C上的动点,当PA⊥PB时,求证:直线AB恒过一个定点.并求出该定点的坐标.
【答案】分析:(1)设出椭圆方程,E,F的坐标,根据离心率设,则b可求得,把直线方程与椭圆方程联立根据判别式求得t的范围.根据线段EF的距离求得t,则椭圆方程可得.
(2)当直线l不垂直于x轴时,设AB:y=kx+mA(x1,y1)B(x2,y2),与椭圆方程联立,根据=0求得m,分别代入直线方程即可求得直线恒过的点.进而再看当直线l垂直于x轴时,可求得A,B的坐标,代入=0符合题意.综合答案可得.
解答:解:(1)设椭圆方程为(a>b>0),E(x1,y1)F(x2,y2则b=t

得:2y2-2y+1-t2=0
△=4-4×2(1-t2)>0∴
∴t2=1
椭圆C的方程是:
(2)当直线l不垂直于x轴时,设AB:y=kx+mA(x1,y1)B(x2,y2得(1+4k2)x2+8kmx+4(m2-1)=0=
∴12k2+5m2-16km=0(6k-5m)(2k-m)=0

时,恒过定点
当m=2k时,AB:y=kx+2k恒过定点(-2,0),不符合题意舍去
当直线l垂直于x轴时,若直线AB:则AB与椭圆C相交于

∵PA⊥PB,满足题意
综上可知,直线AB恒过定点,且定点坐标为
点评:本题主要考查了直线与圆锥曲线的综合问题.注意讨论直线斜率存在和不存在两种情况.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C的中心在坐标原点,椭圆C任意一点P到两个焦点F1(-
3
,0)
F2(
3
,0)
的距离之和为4.
(1)求椭圆C的方程;
(2)设过(0,-2)的直线l与椭圆C交于A、B两点,且
OA
OB
=0
(O为坐标原点),求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C的中心在坐标原点,焦点在x轴上,左、右焦点分别为F1,F2,且|F1F2|=2,点P(1,
32
)在椭圆C上.
(I)求椭圆C的方程;
(II)如图,动直线l:y=kx+m与椭圆C有且仅有一个公共点,点M,N是直线l上的两点,且F1M⊥l,F2M⊥l,求四边形F1MNF2面积S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C的中心在坐标原点,焦点在x轴上且过点P(
3
1
2
)
,离心率是
3
2

(1)求椭圆C的标准方程;
(2)直线l过点E(-1,0)且与椭圆C交于A,B两点,若|EA|=2|EB|,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•和平区一模)已知椭圆C的中心在坐标原点,焦点在x轴上,离心率为
1
2
,它的一个顶点恰好是抛物线y=
3
12
x2的焦点.
(I)求椭圆C的标准方程;
(II)若A、B是椭圆C上关x轴对称的任意两点,设P(-4,0),连接PA交椭圆C于另一点E,求证:直线BE与x轴相交于定点M;
(III)设O为坐标原点,在(II)的条件下,过点M的直线交椭圆C于S、T两点,求
OS
OT
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C的中心在坐标原点,它的一条准线为x=-
5
2
,离心率为
2
5
5

(1)求椭圆C的方程;
(2)过椭圆C的右焦点F作直线l交椭圆于A、B两点,交y轴于M点,若
MA
=λ1
AF
, 
MB
=λ2
BF
,求λ12的值.

查看答案和解析>>

同步练习册答案