精英家教网 > 高中数学 > 题目详情
5.客车和货车两车同时从A站出发向两个不同方向行驶,5小时后再C站相遇(如图所示,四边形是长方形)已知B、C两站相距20千米,货车速度比客车速度慢$\frac{1}{4}$,客车每小时行驶多少千米?货车呢?

分析 由题意,客车比货车多跑了20×2千米,设客车的速度是x千米/小时,则货车的速度是x-$\frac{1}{4}$x千米/小时,依据路程=速度×时间,求出两车行驶的路程,根据客车比货车多跑40千米列方程,依据等式性质解答.

解答 解:设客车的速度是x千米/小时,则货车的速度是x-$\frac{1}{4}$x千米/小时
可得5x-(x-$\frac{1}{4}$x)×5=20×2,
所以x=32,
把x=32代入x-$\frac{1}{4}$x=24,
答:货车每小时行24千米,客车每小时行32千米.

点评 本题主要考查了学生依据路程,速度,时间之间等量关系,根据等式性质解方程能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.已知sinα+sinβ=$\frac{21}{65}$,cosα+cosβ=$\frac{27}{65}$,则$\frac{sinβ-sinα}{cosβ-cosα}$=$\frac{9}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在△ABC中,若asinA+bsinB<csinC,则△ABC是(  )
A.钝角三角形B.直角三角形C.锐角三角形D.都有可能

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,四棱锥P-ABCD中,底面ABCD为平行四边形,PA⊥底面ABCD,M是棱PD的中点,且PA=AB=AC=2,BC=2$\sqrt{2}$. 
(Ⅰ)求证:CD⊥平面PAC;
(Ⅱ)求二面角M-AB-C的大小;
(Ⅲ)如果N是棱AB上一点,且直线CN与平面MAB所成角的正弦值为$\frac{{\sqrt{10}}}{5}$,求$\frac{AN}{NB}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.对于定义在N*上的函数f(x),若?x0,N∈N*,使f(x0)+f(x0+1)+…+f(x0+n)=63成立,则称(x0,n)为函数f(x)的一个“生成点”.已知函数f(x)=2x+1,x∈N*,则该函数的“生成点”共有(  )
A.2个B.3个C.4个D.5个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=$\frac{x}{2}$,数列{an}满足关系为an=f(an-1),(n≥2且n∈N)且a1=16.
(1)证明:数列{an}是等比数列;
(2)求数列{an}的通项公式;
(3)设bn=log2an,求数列{bn}的前n项和Sn,并求Sn取最大值时n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.函数f(x)=-x3-3x+5的零点所在的区间为[n,n+1],n∈Z,则n的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.函数f(x)=πx-1的零点是0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在直三棱柱ABC-A1B1C1中,AA1=AC,AB⊥AC,求证:A1C⊥BC1

查看答案和解析>>

同步练习册答案