精英家教网 > 高中数学 > 题目详情
10.在△ABC中,若asinA+bsinB<csinC,则△ABC是(  )
A.钝角三角形B.直角三角形C.锐角三角形D.都有可能

分析 利用正弦定理和余弦定理即可得出.

解答 解:由正弦定理可得$\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}=k$>0,
∴sinA=$\frac{a}{k}$,sinB=$\frac{b}{k}$,sinC=$\frac{c}{k}$.
∵asinA+bsinB<csinC,
∴$\frac{{a}^{2}}{k}$+$\frac{{b}^{2}}{k}$<$\frac{{c}^{2}}{k}$,即a2+b2<c2
∴cosC=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$<0.
∵0<C<π,∴$\frac{π}{2}$<C<π.
∴角C设钝角.
∴△ABC的形状是钝角三角形.
故选:A.

点评 本题主要考查了正弦定理,余弦定理在解三角形中的应用,熟练掌握正弦定理和余弦定理是解题的关键,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知$\overrightarrow{a}$=(sinx,cosx),$\overrightarrow{b}$=(cosx,sinx)若$\overrightarrow{a}$=$\overrightarrow{b}$,求x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.求解不等式:$\sqrt{1+lgx}$>1-lgx.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=(1-b)x2-2ax+b,当0≤a≤$\frac{1}{2}$,a≤b时,求证:f(x)≥0在x∈[-1,1]上恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若函数y=x2的图象与y=n(n>0)的图象所围成的封闭图形的面积为$\frac{32}{3}$,则二项式(1-$\frac{n}{x}$)n的展开式中$\frac{1}{{x}^{2}}$的系数为96.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,已知半椭圆C:$\frac{x^2}{a^2}+{y^2}=1({a>1,x≥0})$的离心率为$\frac{{\sqrt{3}}}{2}$,曲线C2是以半椭圆C1的短轴为直径的圆在y轴右侧的部分,点P(x0,y0)是曲线C2上的任意一点,过点P且与曲线C2相切的直线l与半椭圆C1交于两个不同点A、B.
(Ⅰ)求直线l的方程(用x0,y0表示);
(Ⅱ)求弦|AB|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.客车和货车两车同时从A站出发向两个不同方向行驶,5小时后再C站相遇(如图所示,四边形是长方形)已知B、C两站相距20千米,货车速度比客车速度慢$\frac{1}{4}$,客车每小时行驶多少千米?货车呢?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.袋中有4个红球、4个白球共8个球,这些球除颜色外完全相同.
(1)从袋中任取一球,记下颜色后放回袋中,如此重复4次,求4次取球中至少有3次取得白球的概率;
(2)某商场开展了一次促销活动,每个顾客可以凭购物票据参加一次抽奖游戏,游戏规定,抽奖者须一次性地从袋中任取4球.若取出的4球均为红球,则获得价值100元的奖品;若取出的4球中恰有3只红球,则获得价值80元的奖品;若取出的4球中恰有2只红球,则获得价值50元的奖品;否则没有任何奖品.求顾客甲获得奖品价值X的分布列与期望.

查看答案和解析>>

同步练习册答案