精英家教网 > 高中数学 > 题目详情
5.若函数y=x2的图象与y=n(n>0)的图象所围成的封闭图形的面积为$\frac{32}{3}$,则二项式(1-$\frac{n}{x}$)n的展开式中$\frac{1}{{x}^{2}}$的系数为96.

分析 利用定积分,求面积,可得n,再确定二项式(1-$\frac{n}{x}$)n的通项,即可得出结论.

解答 解:已知y=x2的图象与y=n(n>0)的图象所围成的封闭图形的面积为$\frac{32}{3}$,
利用定积分,面积S=2${∫}_{0}^{\sqrt{n}}$(n-x2)dx=$(nx-\frac{1}{3}{x}^{3}){|}_{0}^{\sqrt{n}}$=$\frac{32}{3}$,得${n}^{\frac{3}{2}}$=8,
所以n=4,
所以二项式(1-$\frac{4}{x}$)4的通项为${T}_{r+1}={C}_{4}^{r}•(-4)^{r}•{x}^{-r}$,
令r=2可得二项式(1-$\frac{4}{x}$)4的展开式中$\frac{1}{{x}^{2}}$的系数为${C}_{4}^{2}•(-4)^{2}$=96,
故答案为:96.

点评 本题考查定积分在求面积中的应用及利用二项式定理求二项式系数的试题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.设各项为正的等比数列{an}的前n项和为Sn,若S9:S3=3:1,则S6:S3=2:1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.解复数方程:x2+(4+i)x+$\frac{15}{4}$+2i=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.算式$\sqrt{1.5}$•sin2945°•cos(-1110°)-(-$\frac{\sqrt{2}}{4}$)${\;}^{\frac{1}{3}}$•(lg0.2-2lg$\sqrt{2}$)=-$\frac{\sqrt{2}}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.用数学归纳法证明等式1(n2-12)+2(n2-22)+…+n(n2-n2)=$\frac{1}{4}$n4-$\frac{1}{4}$n2对一切正整数n都成立.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在△ABC中,若asinA+bsinB<csinC,则△ABC是(  )
A.钝角三角形B.直角三角形C.锐角三角形D.都有可能

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,△P′AB是边长为$\sqrt{3}$+1的等边三角形,P′C=P′D=$\sqrt{3}$-1,现将△P′CD沿边CD折起至PCD将四棱锥P-ABCD,且PC⊥BD.
(Ⅰ)证明:BD⊥平面PAC;
(Ⅱ)求四棱锥P-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.对于定义在N*上的函数f(x),若?x0,N∈N*,使f(x0)+f(x0+1)+…+f(x0+n)=63成立,则称(x0,n)为函数f(x)的一个“生成点”.已知函数f(x)=2x+1,x∈N*,则该函数的“生成点”共有(  )
A.2个B.3个C.4个D.5个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=x+$\frac{1+a}{x}$-alnx(a>-1)
(1)求函数f(x)的单调区间;
(2)若函数f(x)在区间[1,e](e=2.718…为自然数的底数)上存在一点x0,使得f(x0)<0成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案