精英家教网 > 高中数学 > 题目详情
13.算式$\sqrt{1.5}$•sin2945°•cos(-1110°)-(-$\frac{\sqrt{2}}{4}$)${\;}^{\frac{1}{3}}$•(lg0.2-2lg$\sqrt{2}$)=-$\frac{\sqrt{2}}{8}$.

分析 原式利用诱导公式,负指数幂法则,对数的运算性质计算即可得到结果.

解答 解:原式=$\sqrt{\frac{3}{2}}$•sin2(720°+180°+45°)•cos(-1080°-30°)+$\root{3}{\frac{\sqrt{2}}{4}}$•lg$\frac{0.2}{2}$
=$\frac{\sqrt{6}}{2}$×$\frac{1}{2}$×$\frac{\sqrt{3}}{2}$-$\frac{\sqrt{2}}{2}$
=-$\frac{\sqrt{2}}{8}$.
故答案为:-$\frac{\sqrt{2}}{8}$.

点评 此题考查了运用诱导公式化简求值,熟练掌握运算法则是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知φ,β均为锐角,cosφ=$\frac{3}{5}$,cos(φ+β)=-$\frac{5}{13}$,求cosβ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知△ABC的三边a,b,c所对的角分别为A,B,C,且a:b:c=7:5:3.
(1)求cosA的值;
(2)若△ABC外接圆的半径为14,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.求解不等式:$\sqrt{1+lgx}$>1-lgx.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知8A${\;}_{x}^{5}$=3A${\;}_{x+1}^{5}$,则x=7.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=(1-b)x2-2ax+b,当0≤a≤$\frac{1}{2}$,a≤b时,求证:f(x)≥0在x∈[-1,1]上恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若函数y=x2的图象与y=n(n>0)的图象所围成的封闭图形的面积为$\frac{32}{3}$,则二项式(1-$\frac{n}{x}$)n的展开式中$\frac{1}{{x}^{2}}$的系数为96.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,已知半椭圆C:$\frac{x^2}{a^2}+{y^2}=1({a>1,x≥0})$的离心率为$\frac{{\sqrt{3}}}{2}$,曲线C2是以半椭圆C1的短轴为直径的圆在y轴右侧的部分,点P(x0,y0)是曲线C2上的任意一点,过点P且与曲线C2相切的直线l与半椭圆C1交于两个不同点A、B.
(Ⅰ)求直线l的方程(用x0,y0表示);
(Ⅱ)求弦|AB|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.某同学利用图形计算器对分段函数f(x)=$\left\{\begin{array}{l}{2^x}+1{,_{\;}}x≤0\\ ln(x+k)-1{,_{\;}}x>0\end{array}$作了如下探究:

根据该同学的探究分析可得:当k=-1时,函数f(x)的零点所在区间为(3.69,3.75)(填第5行的a、b);若函数f(x)在R上为增函数,则实数k的取值范围是k≥e3

查看答案和解析>>

同步练习册答案