精英家教网 > 高中数学 > 题目详情
3.已知φ,β均为锐角,cosφ=$\frac{3}{5}$,cos(φ+β)=-$\frac{5}{13}$,求cosβ的值.

分析 求出sinφ,sin(φ+β),然后求解cosβ的值.

解答 解:φ,β均为锐角,cosφ=$\frac{3}{5}$,sinφ=$\frac{4}{5}$.
cos(φ+β)=-$\frac{5}{13}$,sin(φ+β)=$\sqrt{1-(-\frac{5}{13})^{2}}$=$\frac{12}{13}$.
cosβ=cos[(φ+β)-φ]=cos(φ+β)cosφ+sin(φ+β)sinφ=$-\frac{5}{13}×\frac{3}{5}+\frac{12}{13}×\frac{4}{5}$=$\frac{33}{65}$.

点评 本题考查两角和与差的余弦函数的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.f(x)是定义于非负实数集上且取非负实数值的函数,求所有满足下列条件的f(x).
(1)f(xf(y))f(y)=f(x+y);
(2)f(2)=0;
(3)当0≤x<2时,f(x)≠0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在(1,+∞)上的函数f(x)满足:①f(2x)=cf(x)(c为正常数);②当2≤x≤4时,f(x)=1-(x-3)2,若函数f(x)的图象上所有极大值对应的点均落在同一条直线上,则c等于1或2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.有五个主持人,甲、乙、丙、丁、戊主持依次出场,其中甲不能第一个出场,戊不能在最后一个出场,甲戊不相邻的情况有多少种?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.某几何体在网格纸上的三视图如图所示,已知网格纸上小正方形的边长为1,则该几何体的体积为(  )
A.$\frac{4π}{3}$B.$\frac{5π}{3}$C.$\frac{7π}{3}$D.$\frac{8π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.求(a+$\frac{1}{{a}^{2}}$+1)10展开式中的常数项.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设各项为正的等比数列{an}的前n项和为Sn,若S9:S3=3:1,则S6:S3=2:1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=$\left\{\begin{array}{l}{-lnx,0<x≤e}\\{a(x+e),x>e}\end{array}\right.$是(0,+∞)上的减函数,且对任意m∈(0,e],n∈(e,+∞)有f($\frac{m+n}{2}$)$<\frac{1}{2}$[f(m)+f(n)],那么实数a的取值范围是(  )
A.a<-$\frac{1}{e}$B.a$≤-\frac{1}{2e}$C.-1≤a<0D.-$\frac{1}{e}$<a≤-$\frac{1}{2e}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.算式$\sqrt{1.5}$•sin2945°•cos(-1110°)-(-$\frac{\sqrt{2}}{4}$)${\;}^{\frac{1}{3}}$•(lg0.2-2lg$\sqrt{2}$)=-$\frac{\sqrt{2}}{8}$.

查看答案和解析>>

同步练习册答案