分析 (a+$\frac{1}{{a}^{2}}$+1)10展开式的通项为Tr+1=${C}_{10}^{r}(a+\frac{1}{{a}^{2}})^{r}$.对$(a+\frac{1}{{a}^{2}})^{r}$的常数项进行分析,即可得出结论.
解答 解:(a+$\frac{1}{{a}^{2}}$+1)10展开式的通项为Tr+1=${C}_{10}^{r}(a+\frac{1}{{a}^{2}})^{r}$.
对$(a+\frac{1}{{a}^{2}})^{r}$的常数项进行分析,通项为Tk+1=${C}_{r}^{k}{a}^{k}•(\frac{1}{{a}^{2}})^{r-k}$=${C}_{r}^{k}•{a}^{3k-2r}$,
令3k=2r,则k=$\frac{2}{3}$r,r=0,3,6,9,k=0,2,4,6,
则(a+$\frac{1}{{a}^{2}}$+1)10展开式中的常数项为${C}_{10}^{0}+{C}_{10}^{3}{C}_{3}^{2}+{C}_{10}^{6}{C}_{6}^{4}+{C}_{10}^{9}{C}_{9}^{6}$=4351.
点评 本题考查二项式定理的应用,考查学生的技术能力,正确运用公式是关键.
科目:高中数学 来源: 题型:选择题
| A. | B. | C. | D. |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 18 | B. | 48 | C. | 42 | D. | 56 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com