精英家教网 > 高中数学 > 题目详情
18.函数f(x)=$\left\{\begin{array}{l}{-{x}^{2}+1,x<0}\\{(\frac{1}{3})^{x},x≥0}\end{array}\right.$的图象大致为(  )
A.B.C.D.

分析 由函数的解析式可得函数在(-∞,0)上单调递增,且f(x)<1;函数在[0,+∞)上单调递减,且f(x)≤1,结合所给的选项,得出结论.

解答 解:由于函数f(x)=$\left\{\begin{array}{l}{-{x}^{2}+1,x<0}\\{(\frac{1}{3})^{x},x≥1}\end{array}\right.$在(-∞,0)上单调递增,且f(x)<1,
函数在[0,+∞)上单调递减,且f(x)≤1,
结合所给的选项,
故选:C.

点评 本题主要求函数的图象特征,函数的单调性和最值,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.设O是边长为1的等边△ABC的内心,则$\overrightarrow{OA}$$•\overrightarrow{OB}$=(  )
A.$\frac{1}{6}$B.-$\frac{1}{6}$C.-$\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知sinα=asinβ,bcosα=acosβ,且a、β为锐角,求证:cosα=$\sqrt{\frac{{a}^{2}-1}{{b}^{2}-1}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知数列{an}是等比数列,Sn为其前n项和.
(1)S4,S10,S7成等差数列,证明:a1,a7,a4也成等差数列;
(2)设S3=$\frac{3}{2}$,Sb=$\frac{21}{16}$,bn=λan-n2,若数列{bn}是单调递减数列,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.f(x)是定义于非负实数集上且取非负实数值的函数,求所有满足下列条件的f(x).
(1)f(xf(y))f(y)=f(x+y);
(2)f(2)=0;
(3)当0≤x<2时,f(x)≠0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在△AOB上,点P为边AB上的一点,且|$\overrightarrow{AP}$|=2|$\overrightarrow{PB}$|.
(1)试用$\overrightarrow{OA},\overrightarrow{OB}$表示$\overrightarrow{OP}$;
(2)若|$\overrightarrow{OA}$|=3,|$\overrightarrow{OB}$|=2,且∠AOB=$\frac{π}{3}$,求$\overrightarrow{OP}•\overrightarrow{AB}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.命题p:{m|m2-5m<0},命题q:存在x∈R,使得x02+(m-1)x0+1<0.若“p∨q为真”,“p∧q为假”,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知一个棱锥的三视图如下,根据图中标出的尺寸(单位:cm),可得这个棱锥的侧面积是(  )
A.4cm2B.12cm2C.8+4$\sqrt{2}$cm2D.4+4$\sqrt{2}$+2$\sqrt{3}$cm2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.求(a+$\frac{1}{{a}^{2}}$+1)10展开式中的常数项.

查看答案和解析>>

同步练习册答案