12£®ÒÑÖªº¯Êýf£¨x£©=$\left\{\begin{array}{l}{-lnx£¬0£¼x¡Üe}\\{a£¨x+e£©£¬x£¾e}\end{array}\right.$ÊÇ£¨0£¬+¡Þ£©Éϵļõº¯Êý£¬ÇÒ¶ÔÈÎÒâm¡Ê£¨0£¬e]£¬n¡Ê£¨e£¬+¡Þ£©ÓÐf£¨$\frac{m+n}{2}$£©$£¼\frac{1}{2}$[f£¨m£©+f£¨n£©]£¬ÄÇôʵÊýaµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®a£¼-$\frac{1}{e}$B£®a$¡Ü-\frac{1}{2e}$C£®-1¡Üa£¼0D£®-$\frac{1}{e}$£¼a¡Ü-$\frac{1}{2e}$

·ÖÎö Óɷֶκ¯Êýf£¨x£©=$\left\{\begin{array}{l}{-lnx£¬0£¼x¡Üe}\\{a£¨x+e£©£¬x£¾e}\end{array}\right.$ÊÇ£¨0£¬+¡Þ£©Éϵļõº¯ÊýÖª$\left\{\begin{array}{l}{a£¼0}\\{a£¨e+e£©¡Ü-lne}\end{array}\right.$£¬´Ó¶ø½âµÃ¿ÉÅųýC£¬ÔÙÁîa=-1£¬´Ó¶ø´úÈë¿ÉÅųýA£¬B£»´Ó¶øÈ·¶¨´ð°¸£®

½â´ð ½â£º¡ßº¯Êýf£¨x£©=$\left\{\begin{array}{l}{-lnx£¬0£¼x¡Üe}\\{a£¨x+e£©£¬x£¾e}\end{array}\right.$ÊÇ£¨0£¬+¡Þ£©Éϵļõº¯Êý£¬
¡à$\left\{\begin{array}{l}{a£¼0}\\{a£¨e+e£©¡Ü-lne}\end{array}\right.$£¬
½âµÃ£¬a¡Ü-$\frac{1}{2e}$£»
¹ÊÅųýC£»
µ±a=-1ʱ£¬
º¯Êýf£¨x£©=$\left\{\begin{array}{l}{-lnx£¬0£¼x¡Üe}\\{a£¨x+e£©£¬x£¾e}\end{array}\right.$µÄͼÏóÈçÓÒͼ£¬
¶ÔÈÎÒâm¡Ê£¨0£¬e]£¬n¡Ê£¨e£¬+¡Þ£©ÓÐf£¨$\frac{m+n}{2}$£©$£¼\frac{1}{2}$[f£¨m£©+f£¨n£©]²»ÄܳÉÁ¢£¬
¹ÊÅųýA£¬B£»
¹ÊÑ¡D£®

µãÆÀ ±¾Ì⿼²éÁ˷ֶκ¯ÊýµÄÓ¦Óü°ÊýÐνáºÏµÄ˼ÏëÓ¦Óã¬Í¬Ê±¿¼²éÁËÅųý·¨µÄÓ¦Óã¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®¶¨ÒåÔÚ[1£¬+¡Þ£©Éϵĺ¯Êýf£¨x£©Âú×㣺¢Ùf£¨2x£©=cf£¨x£©£¨cΪÕý³£Êý£©£»¢Úµ±2¡Üx¡Ü4ʱ£¬f£¨x£©=£¨x-3£©2+1Èôº¯Êýf£¨x£©µÄͼÏóÉÏËùÓм«Ð¡Öµ¶ÔÓ¦µÄµã¾ùÔÚͬһÌõÖ±ÏßÉÏ£¬Ôòc=£¨¡¡¡¡£©
A£®1B£®2C£®1»ò2D£®2»ò4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÒÑÖª¦Õ£¬¦Â¾ùΪÈñ½Ç£¬cos¦Õ=$\frac{3}{5}$£¬cos£¨¦Õ+¦Â£©=-$\frac{5}{13}$£¬Çócos¦ÂµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÒÑÖª$\overrightarrow{a}$=£¨sinx£¬cosx£©£¬$\overrightarrow{b}$=£¨cosx£¬sinx£©Èô$\overrightarrow{a}$=$\overrightarrow{b}$£¬Çóx£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®½â·½³Ì£ºlog2£¨x-1£©=log4x£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®¶¨ÒåÔÚRÉϵĺ¯Êýf£¨x£©Âú×ãf£¨x£©=$\left\{\begin{array}{l}{lo{g}_{3}£¨1-x£©£¬x¡Ü0}\\{f£¨x-1£©-f£¨x-2£©£¬x£¾0}\end{array}\right.$£¬Ôòf£¨2014£©=log32£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÒÑÖª¡÷ABCµÄÈý±ßa£¬b£¬cËù¶ÔµÄ½Ç·Ö±ðΪA£¬B£¬C£¬ÇÒa£ºb£ºc=7£º5£º3£®
£¨1£©ÇócosAµÄÖµ£»
£¨2£©Èô¡÷ABCÍâ½ÓÔ²µÄ°ë¾¶Îª14£¬Çó¡÷ABCµÄÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®Çó½â²»µÈʽ£º$\sqrt{1+lgx}$£¾1-lgx£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®Èçͼ£¬ÒÑÖª°ëÍÖÔ²C£º$\frac{x^2}{a^2}+{y^2}=1£¨{a£¾1£¬x¡Ý0}£©$µÄÀëÐÄÂÊΪ$\frac{{\sqrt{3}}}{2}$£¬ÇúÏßC2ÊÇÒÔ°ëÍÖÔ²C1µÄ¶ÌÖáΪֱ¾¶µÄÔ²ÔÚyÖáÓÒ²àµÄ²¿·Ö£¬µãP£¨x0£¬y0£©ÊÇÇúÏßC2ÉϵÄÈÎÒâÒ»µã£¬¹ýµãPÇÒÓëÇúÏßC2ÏàÇеÄÖ±ÏßlÓë°ëÍÖÔ²C1½»ÓÚÁ½¸ö²»Í¬µãA¡¢B£®
£¨¢ñ£©ÇóÖ±ÏßlµÄ·½³Ì£¨ÓÃx0£¬y0±íʾ£©£»
£¨¢ò£©ÇóÏÒ|AB|µÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸