分析 (1)设a=7t,b=5t,c=3t,由余弦定理即可求cosA的值.
(2)由(1)可得sinA的值,利用已知及正弦定理求出sinA与sinB及sinC的值,再由正弦定理可求a,b的值,利用三角形面积公式即可求出△ABC的面积.
解答 解:(1)由题意可设:a=7t,b=5t,c=3t,
则由余弦定理可得:cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{25{t}^{2}+9{t}^{2}-49{t}^{2}}{30{t}^{2}}$=-$\frac{1}{2}$.
(2)由(1)可得:sinA=$\sqrt{1-co{s}^{2}A}$=$\frac{\sqrt{3}}{2}$,
由正弦定理可得:a:b:c=sinA:sinB:sinC=7:5:3.
从而可得:sinB=$\frac{5sinA}{7}$=$\frac{5\sqrt{3}}{14}$,sinC=$\frac{3sinA}{7}$=$\frac{3\sqrt{3}}{14}$,
由正弦定理$\frac{a}{sinA}=\frac{b}{sinB}$=2R,以及R=14,得a=2RsinA=14$\sqrt{3}$,b=2RsinB=10$\sqrt{3}$,
∴S△ABC=$\frac{1}{2}$absinC=$\frac{1}{2}×14\sqrt{3}×10\sqrt{3}×\frac{3\sqrt{3}}{14}$=45$\sqrt{3}$.
点评 本题中考查了正弦定理,三角形面积公式,余弦定理等知识的综合应用,属于基本知识的考查.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a<-$\frac{1}{e}$ | B. | a$≤-\frac{1}{2e}$ | C. | -1≤a<0 | D. | -$\frac{1}{e}$<a≤-$\frac{1}{2e}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2个 | B. | 3个 | C. | 4个 | D. | 5个 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com