精英家教网 > 高中数学 > 题目详情
14.在(1,+∞)上的函数f(x)满足:①f(2x)=cf(x)(c为正常数);②当2≤x≤4时,f(x)=1-(x-3)2,若函数f(x)的图象上所有极大值对应的点均落在同一条直线上,则c等于1或2.

分析 由已知可得分段函数f(x)的解析式,进而求出三个函数的极值点坐标,根据三点共线,则任取两点确定的直线斜率相等,可以构造关于c的方程,解方程可得答案.

解答 【解答】解:∵当2≤x≤4时,f(x)=1-(x-3)2
当1≤x<2时,则2≤2x<4,
则f(x)=$\frac{1}{c}$f(2x)=$\frac{1}{c}$[1-(2x-3)2],此时当x=$\frac{3}{2}$时,函数取极大值$\frac{1}{c}$;
当2≤x≤4时,f(x)=1-(x-3)2,此时当x=3时,函数取极大值1;
当4<x≤8时,2<$\frac{1}{2}$x≤4,则f(x)=cf($\frac{1}{2}$x)=c(1-($\frac{1}{2}$x-3)2,此时当x=6时,函数取极大值c;
∵函数的所有极大值点均落在同一条直线上,
即点($\frac{3}{2}$,$\frac{1}{c}$),(3,1),(6,c)共线,
∴$\frac{1-\frac{1}{c}}{3-\frac{3}{2}}$=$\frac{c-1}{6-3}$,解得c=1或2.
故答案为:1或2.

点评 本题考查的知识点是三点共线,函数的极值,其中根据已知求出分段函数f(x)的解析式,进而求出三个函数的极值点坐标,是解答本题的关键.属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.若α∩β=l,A、B∈α,C∈β,试画出平面ABC与平面α、β的交线.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知θ是第二象限的角,且sin$\frac{θ}{2}$<cos$\frac{θ}{2}$,那么sin$\frac{θ}{2}$+cos$\frac{θ}{2}$的取值范围是(  )
A.(-1,0)B.(1,$\sqrt{2}$)C.(-1,1)D.(-$\sqrt{2}$,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.定义在[1,+∞)上的函数f(x)满足:①f(2x)=cf(x)(c为正常数);②当2≤x≤4时,f(x)=(x-3)2+1若函数f(x)的图象上所有极小值对应的点均在同一条直线上,则c=(  )
A.1B.2C.1或2D.2或4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=sin(ωx+φ)(ω>0,0≤φ≤π)是偶函数,其图象关于点M($\frac{3π}{4}$,0)对称,且在区间[0,$\frac{π}{2}$]上是单调函数,求φ和ω的值,并求方程f(x)-lgx=0的实根个数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.某电影院第一排共有9个座位,现有3名观众前来就座,若他们每两个人都不能相邻且要求每人左右至多只有两个空位,那么不同的坐法种数共有(  )
A.18B.48C.42D.56

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.一个几何体的三视图如图所示(单位:cm),则该几何体的体积为48cm3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知φ,β均为锐角,cosφ=$\frac{3}{5}$,cos(φ+β)=-$\frac{5}{13}$,求cosβ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知△ABC的三边a,b,c所对的角分别为A,B,C,且a:b:c=7:5:3.
(1)求cosA的值;
(2)若△ABC外接圆的半径为14,求△ABC的面积.

查看答案和解析>>

同步练习册答案