精英家教网 > 高中数学 > 题目详情
5.已知θ是第二象限的角,且sin$\frac{θ}{2}$<cos$\frac{θ}{2}$,那么sin$\frac{θ}{2}$+cos$\frac{θ}{2}$的取值范围是(  )
A.(-1,0)B.(1,$\sqrt{2}$)C.(-1,1)D.(-$\sqrt{2}$,-1)

分析 先确定k=2n+1,2nπ+$\frac{5}{4}$π<$\frac{θ}{2}$<2nπ+$\frac{3}{2}$π,sin$\frac{θ}{2}$<0,cos$\frac{θ}{2}$<0,再确定sin$\frac{θ}{2}$+cos$\frac{θ}{2}$的取值范围.

解答 解:∵θ是第二象限的角,∴2kπ+$\frac{π}{2}$<θ<2kπ+π(k∈Z),
∴kπ+$\frac{π}{4}$<$\frac{θ}{2}$<kπ+$\frac{π}{2}$,
k=2n,2nπ+$\frac{π}{4}$<$\frac{θ}{2}$<2nπ+$\frac{π}{2}$,不满足sin$\frac{θ}{2}$<cos$\frac{θ}{2}$,
∴k=2n+1,2nπ+$\frac{5}{4}$π<$\frac{θ}{2}$<2nπ+$\frac{3}{2}$π,sin$\frac{θ}{2}$<0,cos$\frac{θ}{2}$<0
∵(sin$\frac{θ}{2}$+cos$\frac{θ}{2}$)2=1+sinθ,
∴1<1+sinθ<2,
∴-$\sqrt{2}$<sin$\frac{θ}{2}$+cos$\frac{θ}{2}$<-1,
故选:D.

点评 本题考查sin$\frac{θ}{2}$+cos$\frac{θ}{2}$的取值范围,考查学生的计算能力,确定2nπ+$\frac{5}{4}$π<$\frac{θ}{2}$<2nπ+$\frac{3}{2}$π是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知某几何体的一条棱长为m,在正视图中的投影长为$\sqrt{6}$,在侧视图与俯视图中的投影长为a与b,且a+b=4,则m的最小值为(  )
A.2B.$\sqrt{5}$C.$\sqrt{6}$D.$\sqrt{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知x∈R,2$\sqrt{2}$sinx+cosx=$\frac{6m-9}{4-m}$,则实数m的取值范围是[-1,$\frac{7}{3}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.f(x)是定义于非负实数集上且取非负实数值的函数,求所有满足下列条件的f(x).
(1)f(xf(y))f(y)=f(x+y);
(2)f(2)=0;
(3)当0≤x<2时,f(x)≠0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.有下列命题:
①x=0是函数y=x3+1的极值点;
②三次函数f(x)=ax3+bx2+cx+d有极值点的充要条件是b2-3ac>0;
③奇函数f(x)=mx3+(m-1)x2+48(m-2)x+n在区间(4,+∞)上是递增的;
其中真命题的序号是②③.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.命题p:{m|m2-5m<0},命题q:存在x∈R,使得x02+(m-1)x0+1<0.若“p∨q为真”,“p∧q为假”,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在平面直角坐标系xOy中,设D是由不等式$\left\{\begin{array}{l}{x+y-1≤0}\\{x-y+1≥0}\\{y≥0}\end{array}\right.$表示的区域,E是到原点的距离不大于1的点构成的区域,若向E中随机投一点,则所投点落在D中的概率是(  )
A.$\frac{2}{π}$B.$\frac{1}{π}$C.$\frac{1}{2π}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在(1,+∞)上的函数f(x)满足:①f(2x)=cf(x)(c为正常数);②当2≤x≤4时,f(x)=1-(x-3)2,若函数f(x)的图象上所有极大值对应的点均落在同一条直线上,则c等于1或2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设各项为正的等比数列{an}的前n项和为Sn,若S9:S3=3:1,则S6:S3=2:1.

查看答案和解析>>

同步练习册答案