精英家教网 > 高中数学 > 题目详情
20.有下列命题:
①x=0是函数y=x3+1的极值点;
②三次函数f(x)=ax3+bx2+cx+d有极值点的充要条件是b2-3ac>0;
③奇函数f(x)=mx3+(m-1)x2+48(m-2)x+n在区间(4,+∞)上是递增的;
其中真命题的序号是②③.

分析 ①用极值点的定义的来判断;
②通过导数有不等根来判断;
③当x>4时,f′(x)>0恒成立来判断.

解答 解:①y′=3x2≥0,无极值点,故①错误;
②f′(x)=3ax2+2bx+c=0有解,需满足:b2-3ac>,故②正确;
③f′(x)=3mx2+2(m-1)x+48(m-2),当x>4时,f′(x)>0,故③正确;
故答案为:②③.

点评 本题主要考查函数极值点的定义及有极值的条件,考查函数的单调性,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.画出(x+2y-1)(x-y+3)>0表示的平面区域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.书架上竖排着六本书,现将新购的3本书上架,要求不调乱书架上原有的书,那么不同的上架方式共有多少种?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知f(x)=xlnx-$\frac{1}{2}$mx2-x,m∈R,当m=-2时,求函数f(x)的所有零点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.有一批仪器原售价为每台1000元.在甲、乙两家商店均有销售.甲商店用如下方式促销,买一台的单价为980元,买两台每台的单价为960元,以此类推,每多买一台则所买各台单价均再减少20元,但每台最低不能低于640元,乙商店一律按原价的75%销售,某学校需购买一批此类仪器,去哪家商店购买花费较少?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知θ是第二象限的角,且sin$\frac{θ}{2}$<cos$\frac{θ}{2}$,那么sin$\frac{θ}{2}$+cos$\frac{θ}{2}$的取值范围是(  )
A.(-1,0)B.(1,$\sqrt{2}$)C.(-1,1)D.(-$\sqrt{2}$,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=sin2x+$\sqrt{3}$sinxcosx-$\frac{1}{2}$
(1)若x∈[0,$\frac{π}{2}$],求函数f(x)的取值范围;
(2)已知a,b,c分别为△ABC内角A、B、C的对边,其中A为锐角,a=2$\sqrt{3}$,c=4且f(A)=1,求A,b和△ABC的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=sin(ωx+φ)(ω>0,0≤φ≤π)是偶函数,其图象关于点M($\frac{3π}{4}$,0)对称,且在区间[0,$\frac{π}{2}$]上是单调函数,求φ和ω的值,并求方程f(x)-lgx=0的实根个数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知$\overrightarrow{{P}_{1}{P}_{2}}$=-$\frac{4}{3}$$\overrightarrow{{P}_{1}P}$,若$\overrightarrow{{P}_{1}P}$=-λ$\overrightarrow{P{P}_{2}}$,则λ=(  )
A.-3B.3C.-$\frac{1}{2}$D.-$\frac{3}{2}$

查看答案和解析>>

同步练习册答案