精英家教网 > 高中数学 > 题目详情
8.已知实数x,y满足约束条件$\left\{\begin{array}{l}x-y≥0\\ x+y-4≤0\\ y≥1\end{array}\right.$,则$z={({\frac{1}{2}})^{-2x+y}}$的最小值为2.

分析 由$z={({\frac{1}{2}})^{-2x+y}}$=22x-y,设m=2x-y,求m的最小值即可得到结论.

解答 解:作出不等式组对应的平面区域如图,
∵$z={({\frac{1}{2}})^{-2x+y}}$=22x-y
∴m=2x-y,
要求$z={({\frac{1}{2}})^{-2x+y}}$的最小值,即求m的最小值即可,
由m=2x-y,得y=2x-m,
平移直线y=2x-m,由平移可知当直线y=2x-m,
经过点A时,直线y=2x-m的截距最大,此时m取得最小值,
由$\left\{\begin{array}{l}{y=1}\\{x-y=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=1}\\{y=1}\end{array}\right.$,即A(1,1).
代入m=2x-y,得m=2-1=1,
即$z={({\frac{1}{2}})^{-2x+y}}$=22x-y的最小值为2.
故答案为:2

点评 本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.函数y=$\frac{1}{2}$arccos($\frac{1}{4}$+x-x2)的值域为(  )
A.[0,π]B.[$\frac{π}{6}$,$\frac{π}{2}$]C.[$\frac{π}{3}$,π]D.[$\frac{π}{3}$,$\frac{2π}{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.平面直角坐标系xOy中,已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左焦点为F,离心率为$\frac{{\sqrt{2}}}{2}$,过点F且垂直于长轴的弦长为$\sqrt{2}$.
(I)求椭圆C的标准方程;
(Ⅱ)设点A,B分别是椭圆的左、右顶点,若过点P(-2,0)的直线与椭圆相交于不同两点M,N.
(i)求证:∠AFM=∠BFN;
(ii)求△MNF面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设定义在(-1,1)上的函数f(x)的导函数f′(x)=5+cosx,且f(0)=0,则不等式f(x-1)+f(1-x2)<0的解集为(  )
A.{x|1$<x<\sqrt{2}$}B.{x|x>1或x<-1}C.{x|-1<x<1}D.{x|0<x<1}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=x-1-a(x-1)2-lnx(a∈R).
(1)当a=0时,求函数f(x)的单调区间;
(2)若函数g(x)=f(x)-x+1有一个极小值点和一个极大值点,求a的取值范围;
(3)若存在k∈(1,2),使得当x∈(0,k]时,f(x)的值域是[f(k),+∞),求a的取值范围.注:自然对数的底数e=2.71828…

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.过抛物线τ:y2=8x的焦点F作直线交抛物线于A,B两点,若|AF|=6,则抛物线τ的顶点到直线AB的距离为$\frac{2\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,已知F为抛物线y2=2x的焦点,点A,B,C在该抛物线上,其中A,C关于x轴对称(A在第一象限),且直线BC经过点F.
(Ⅰ)若△ABC的重心为G(x0,$\frac{2}{3}$),求x0的值;
(Ⅱ)设S△ABO=S1,S△CFO=S2,其中O为坐标原点,求S12+S22的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,一个圆锥形的空杯子上面放着一个半球形的冰淇淋,如果冰淇淋融化了,冰淇淋会从杯子溢出吗?请计算说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知抛物线C:y2=8x的焦点为F,P为抛物线的准线上的一点,且P的纵坐标为正数,Q是直线PF与抛物线C的一个交点,若$\overrightarrow{PQ}=\sqrt{2}\overrightarrow{QF}$,则直线PF的方程为(  )
A.x-y-2=0B.x+y-2=0C.x±y-2=0D.不确定

查看答案和解析>>

同步练习册答案