分析 设A(x1,y1),B(x2,y2),C(x1,-y1),运用三角形的重心坐标公式和抛物线方程,即可求得A,B的坐标,进而得到直线方程;
(Ⅱ)通过直线BC,AB的方程和抛物线方程,运用韦达定理,可得AB恒过定点(-$\frac{1}{2}$,0),即有S△ABO=$\frac{1}{2}$|OE|•|y2-y1|=$\frac{1}{4}$|y2-y1|,S△CFO=$\frac{1}{2}$|OF|•|y1|=$\frac{1}{4}$|y1|,y1y2=1,再由基本不等式计算即可得到最小值.
解答 解:(I)设A(x1,y1),B(x2,y2),C(x1,-y1).
∴△ABC的重心G($\frac{2{x}_{1}+{x}_{2}}{3}$,$\frac{{y}_{2}}{3}$).
∴$\left\{\begin{array}{l}{\frac{{y}_{2}}{3}=\frac{2}{3}}\\{{{y}_{2}}^{2}=2{x}_{2}}\end{array}\right.$,解得$\left\{\begin{array}{l}{{x}_{2}=2}\\{{y}_{2}=2}\end{array}\right.$.
∵F($\frac{1}{2}$,0),kBF=kBC,
∴$\frac{2}{2-\frac{1}{2}}=\frac{2+{y}_{1}}{2-{x}_{1}}$,又y12=2x1,解得x1=$\frac{1}{8}$,y1=$\frac{1}{2}$.
∴x0=$\frac{2{x}_{1}+{x}_{2}}{3}$=$\frac{3}{4}$.
(II)设直线BC方程为x-$\frac{1}{2}$=my,联立方程组$\left\{\begin{array}{l}{x-\frac{1}{2}=my}\\{{y}^{2}=2x}\end{array}\right.$得,y2-2my-1=0,
∴-y1y2=-1,即y1y2=1.
设AB方程为y=kx+n,联立方程组$\left\{\begin{array}{l}{y=kx+n}\\{{y}^{2}=2x}\end{array}\right.$得,ky2-2y+2n=0,
∴y1y2=$\frac{2n}{k}=1$,∴n=$\frac{k}{2}$.
∴直线AB方程为y=k(x+$\frac{1}{2}$),即直线AB经过点E(-$\frac{1}{2}$,0).
∴S1=S△AOB=S△OBE-S△OAE=$\frac{1}{2}|OE||{y}_{2}-{y}_{1}|$=$\frac{1}{4}|{y}_{2}-{y}_{1}|$,
S2=$\frac{1}{2}$|OF||y1|=$\frac{1}{4}{y}_{1}$.
∴S12+S22=$\frac{1}{16}({y}_{2}-{y}_{1})^{2}+\frac{1}{16}{{y}_{1}}^{2}$=$\frac{1}{16}$(2y12+y22-2),
∵y1y2=1,∴2y12+y22≥2$\sqrt{2}$
∴$\frac{1}{16}$(2y12+y22-2)≥$\frac{1}{16}$(2$\sqrt{2}$-2)=$\frac{\sqrt{2}-1}{8}$.
∴S12+S22的最小值为$\frac{\sqrt{2}-1}{8}$.
点评 本题考查抛物线的方程和性质,主要考查联立直线方程和抛物线的方程,韦达定理,同时考查基本不等式的运用,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{10}$ | B. | $\frac{7}{20}$ | C. | $\frac{1}{2}$ | D. | $\frac{13}{20}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{4}$ | B. | 2 | C. | -2 | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com