19£®Æ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÑÖªÍÖÔ²$C£º\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨{a£¾b£¾0}£©$µÄ×ó½¹µãΪF£¬ÀëÐÄÂÊΪ$\frac{{\sqrt{2}}}{2}$£¬¹ýµãFÇÒ´¹Ö±ÓÚ³¤ÖáµÄÏÒ³¤Îª$\sqrt{2}$£®
£¨I£©ÇóÍÖÔ²CµÄ±ê×¼·½³Ì£»
£¨¢ò£©ÉèµãA£¬B·Ö±ðÊÇÍÖÔ²µÄ×ó¡¢ÓÒ¶¥µã£¬Èô¹ýµãP£¨-2£¬0£©µÄÖ±ÏßÓëÍÖÔ²ÏཻÓÚ²»Í¬Á½µãM£¬N£®
£¨i£©ÇóÖ¤£º¡ÏAFM=¡ÏBFN£»
£¨ii£©Çó¡÷MNFÃæ»ýµÄ×î´óÖµ£®

·ÖÎö £¨1£©ÔËÓÃÍÖÔ²µÄÀëÐÄÂʹ«Ê½ºÍ¹ý½¹µã´¹Ö±ÓÚ¶Ô³ÆÖáµÄÏÒ³¤£¬½áºÏa£¬b£¬cµÄ¹ØÏµ½âµÃa£¬b£¬¿ÉµÃÍÖÔ²µÄ·½³Ì£»
£¨II£©·½·¨Ò»¡¢£¨i£©ÌÖÂÛÖ±ÏßABµÄбÂÊΪ0ºÍ²»Îª0£¬ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬AB·½³ÌΪx=my-2£¬´úÈëÍÖÔ²·½³Ì£¬ÔËÓÃΤ´ï¶¨ÀíºÍÅбðʽ´óÓÚ0£¬ÔËÓÃÖ±ÏßµÄбÂʹ«Ê½ÇóбÂÊÖ®ºÍ£¬¼´¿ÉµÃÖ¤£»
£¨ii£©ÇóµÃ¡÷MNFµÄÃæ»ý${S_{¡÷MNF}}=\left|{{S_{¡÷PNF}}-{S_¡÷}_{PMF¡ä}}\right|=\frac{1}{2}\left|{PF}\right|•\left|{{y_1}-{y_2}}\right|$£¬»¯¼òÕûÀí£¬ÔËÓûù±¾²»µÈʽ¿ÉµÃ×î´óÖµ£®
·½·¨¶þ¡¢£¨i£©ÓÉÌâÖª£¬Ö±ÏßABµÄбÂÊ´æÔÚ£¬ÉèÖ±ÏßABµÄ·½³ÌΪ£ºy=k£¨x+2£©£¬ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÁªÁ¢ÍÖÔ²·½³Ì£¬ÏûÈ¥y£¬¿ÉµÃxµÄ·½³Ì£¬ÔËÓÃΤ´ï¶¨ÀíºÍÅбðʽ´óÓÚ0£¬ÔÙÓÉÖ±ÏßµÄбÂʹ«Ê½£¬ÇóµÃ¼´¿ÉµÃÖ¤£»
£¨ii£©ÇóµÃÏÒ³¤|MN|£¬µãFµ½Ö±ÏߵľàÀëd£¬ÔËÓÃÈý½ÇÐεÄÃæ»ý¹«Ê½£¬»¯¼òÕûÀí£¬ÔËÓû»Ôª·¨ºÍ»ù±¾²»µÈʽ£¬¼´¿ÉµÃµ½ËùÇó×î´óÖµ£®

½â´ð ½â£º£¨1£©ÓÉÌâÒâ¿ÉµÃ$e=\frac{c}{a}=\frac{{\sqrt{2}}}{2}$£¬
Áîx=-c£¬¿ÉµÃy=¡Àb$\sqrt{1-\frac{{c}^{2}}{{a}^{2}}}$=¡À$\frac{{b}^{2}}{a}$£¬
¼´ÓÐ$\frac{{2{b^2}}}{a}=\sqrt{2}$£¬ÓÖa2-b2=c2£¬
ËùÒÔ$a=\sqrt{2}£¬b=1$£®
ËùÒÔÍÖÔ²µÄ±ê×¼·½³ÌΪ$\frac{x^2}{2}+{y^2}=1$£»
£¨II£©·½·¨Ò»¡¢£¨i£©µ±ABµÄбÂÊΪ0ʱ£¬ÏÔÈ»¡ÏAFM=¡ÏBFN=0£¬Âú×ãÌâÒ⣻
µ±ABµÄбÂʲ»Îª0ʱ£¬ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬AB·½³ÌΪx=my-2£¬
´úÈëÍÖÔ²·½³Ì£¬ÕûÀíµÃ£¨m2+2£©y2-4my+2=0£¬
Ôò¡÷=16m2-8£¨m2+2£©=8m2-16£¾0£¬ËùÒÔm2£¾2£®
$\left\{\begin{array}{l}{y_1}+{y_2}=\frac{4m}{{{m^2}+2}}\\{y_1}•{y_2}=\frac{2}{{{m^2}+2}}\end{array}\right.$£¬
¿ÉµÃ${k_{MF}}+{k_{NF}}=\frac{y_1}{{{x_1}+1}}+\frac{y_2}{{{x_2}+1}}=\frac{y_1}{{m{y_1}-1}}+\frac{y_2}{{m{y_2}-1}}$=$\frac{{2m{y_1}{y_2}-£¨{y_1}+{y_2}£©}}{{£¨m{y_1}-1£©£¨m{y_2}-1£©}}$
=$\frac{{2m•£¨\frac{2}{{{m^2}+2}}£©-£¨\frac{4m}{{{m^2}+2}}£©}}{{£¨m{y_1}-1£©£¨m{y_2}-1£©}}=0$£®
ÔòkMF+kNF=0£¬¼´¡ÏAFM=¡ÏBFN£»
£¨ii£©${S_{¡÷MNF}}=\left|{{S_{¡÷PNF}}-{S_¡÷}_{PMF¡ä}}\right|=\frac{1}{2}\left|{PF}\right|•\left|{{y_1}-{y_2}}\right|$${=}\frac{1}{2}¡Á1¡Á\frac{{\sqrt{8{m^2}-16}}}{{{m^2}+2}}=\frac{{\sqrt{2£¨{{m^2}-2}£©}}}{{£¨{{m^2}-2}£©+4}}=\frac{{\sqrt{2}}}{{\sqrt{{m^2}-2}+\frac{4}{{\sqrt{{m^2}-2}}}}}¡Ü\frac{{\sqrt{2}}}{4}$
µ±ÇÒ½öµ±$\sqrt{{m^2}-2}=\frac{4}{{\sqrt{{m^2}-2}}}$£¬¼´m2=6£®£¨´ËʱÊʺϡ÷£¾0µÄÌõ¼þ£©È¡µÃµÈºÅ£®
ÔòÈý½ÇÐÎMNFÃæ»ýµÄ×î´óÖµÊÇ$\frac{{\sqrt{2}}}{4}$£®
·½·¨¶þ£¨i£©ÓÉÌâÖª£¬Ö±ÏßABµÄбÂÊ´æÔÚ£¬ÉèÖ±ÏßABµÄ·½³ÌΪ£ºy=k£¨x+2£©£¬
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬
ÁªÁ¢$\left\{\begin{array}{l}y=k£¨x+2£©\\ \frac{x^2}{2}+{y^2}=1\end{array}\right.$£¬ÕûÀíµÃ£¨1+2k2£©x2+8k2x+8k2-2=0£¬
Ôò¡÷=64k4-4£¨1+2k2£©£¨8k2-2£©=8-16k2£¾0£¬ËùÒÔ$0¡Ü{k^2}£¼\frac{1}{2}$£®
$\left\{\begin{array}{l}{x_1}+{x_2}=-\frac{{8{k^2}}}{{1+2{k^2}}}\\{x_1}•{x_2}=\frac{{8{k^2}-2}}{{1+2{k^2}}}\end{array}\right.$£¬
¿ÉµÃ${k_{MF}}+{k_{NF}}=\frac{y_1}{{{x_1}+1}}+\frac{y_2}{{{x_2}+1}}=\frac{{k£¨{x_1}+2£©}}{{{x_1}+1}}+\frac{{k£¨{{x_2}+2}£©}}{{{x_2}+1}}$
=$\frac{{2k{x_1}{x_2}+3k£¨{x_1}+{x_2}£©+4k}}{{£¨{x_1}+1£©£¨{x_2}+1£©}}$$2k{x_1}{x_2}+3k£¨{x_1}+{x_2}£©+4k=2k£¨{\frac{{8{k^2}-2}}{{1+2{k^2}}}}£©+3k£¨{-\frac{{8{k^2}}}{{1+2{k^2}}}}£©+4k=\frac{{16{k^3}-4k-24{k^3}+8{k^3}+4k}}{{1+2{k^2}}}=0$
¡àkMF+kNF=0£¬¼´¡ÏAFM=¡ÏBFN£»
£¨ii£©$\left|{MN}\right|=\sqrt{1+{k^2}}\left|{{x_1}-{x_2}}\right|=\sqrt{1+{k^2}}\frac{{\sqrt{8£¨1-2{k^2}£©}}}{{1+2{k^2}}}$£¬
µãF£¨-1£¬0£©µ½Ö±ÏßMNµÄ¾àÀëΪ$d=\frac{\left|k\right|}{{\sqrt{1+{k^2}}}}$£¬
¼´ÓÐ${S_{¡÷MNF}}=\frac{1}{2}\left|{MN}\right|•d$=$\frac{1}{2}¡Á£¨{\sqrt{1+{k^2}}\frac{{2\sqrt{2}\sqrt{1-2{k^2}}}}{{1+2{k^2}}}}£©¡Á\frac{\left|k\right|}{{\sqrt{1+{k^2}}}}$=$\sqrt{2}\sqrt{\frac{{£¨{1-2{k^2}}£©{k^2}}}{{{{£¨{1+2{k^2}}£©}^2}}}}$£®
Áît=1+2k2£¬Ôòt¡Ê[1£¬2£©£¬u£¨t£©=$\frac{{£¨2-t£©£¨\frac{t-1}{2}£©}}{t^2}=-\frac{{{t^2}-3t+2}}{{2{t^2}}}=-{£¨{\frac{1}{t}}£©^2}+\frac{3}{2}£¨{\frac{1}{t}}£©-\frac{1}{2}$£¬
µ±ÇÒ½öµ±$\frac{1}{t}=\frac{3}{4}$£¬¼´$k=¡À\frac{{\sqrt{6}}}{6}$£¨´ËʱÊʺϡ÷£¾0µÄÌõ¼þ£©Ê±£¬$u{£¨t£©_{max}}=\frac{1}{16}$£¬
¼´${£¨{S_{¡÷MNF}}£©_{max}}=\frac{{\sqrt{2}}}{4}$£¬ÔòÈý½ÇÐÎMNFÃæ»ýµÄ×î´óÖµÊÇ$\frac{{\sqrt{2}}}{4}$£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ·½³ÌµÄÇ󷨣¬×¢ÒâÔËÓÃÀëÐÄÂʹ«Ê½ºÍ¹ý½¹µã´¹Ö±ÓÚ¶Ô³ÆÖáµÄÏÒ³¤£¬¿¼²éÖ±ÏߺÍÍÖÔ²·½³ÌÁªÁ¢£¬ÔËÓÃΤ´ï¶¨ÀíºÍÅбðʽ´óÓÚ0£¬ÒÔ¼°Ö±ÏßµÄбÂʹ«Ê½£¬¿¼²é»ù±¾²»µÈʽµÄÔËÓãºÇó×îÖµ£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®ÒÑÖª£¨1-x£©5=a0-a1x+a2x2-a3x3+a4x4-a5x5£¬Ôòa1+a3+a5=16£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®ÒÑÖª¼¯ºÏA={l£¬2£¬3£¬4£¬5£¬6}£¬Èô´Ó¼¯ºÏAÖÐÈÎÈ¡3¸ö²»Í¬µÄÊý£¬ÔòÕâÈý¸öÊý¿ÉÒÔ×÷ΪÈý½ÇÐÎÈý±ß³¤µÄ¸ÅÂÊΪ£¨¡¡¡¡£©
A£®$\frac{3}{10}$B£®$\frac{7}{20}$C£®$\frac{1}{2}$D£®$\frac{13}{20}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÒÑÖªº¯Êýf£¨x£©=x2-ax-a2lnx£¨a¡Ù0£©£®
£¨¢ñ£©µ±a=1ʱ£¬Çóº¯Êýf£¨x£©µÄ×îÖµ£»
£¨¢ò£©ÊÔÌÖÂÛº¯Êýf£¨x£©ÔÚ£¨1£¬+¡Þ£©µÄµ¥µ÷ÐÔ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®ÒÑÖªÍÖÔ²µÄ³¤Ö᳤ÊǶÌÖ᳤µÄ2±¶£¬ÔòÍÖÔ²µÄ½¹¾àÓë¶ÌÖ᳤֮±ÈΪ£¨¡¡¡¡£©
A£®$\frac{1}{3}$B£®$\frac{\sqrt{3}}{3}$C£®3D£®$\sqrt{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®ÒÑÖªµãP£¨a£¬b£©ÊÇÅ×ÎïÏßy=$\frac{1}{20}{x}^{2}$ÉϵÄÒ»µã£¬½¹µãΪF£¬Èô|PF|=25£¬Ôò|ab|=£¨¡¡¡¡£©
A£®400B£®360C£®200D£®100

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÒÑÖªº¯Êýf£¨x£©µÄµ¼º¯ÊýΪf¡ä£¨x£©£¬Âú×ãxf¡ä£¨x£©+2f£¨x£©=$\frac{1}{x^2}$£¬ÇÒf£¨1£©=1£®
£¨¢ñ£©Çó³öf£¨x£©µÄ½âÎöʽ£»²¢Çó³öº¯ÊýµÄ×î´óÖµ£»
£¨¢ò£©ÇóÖ¤£ºµ±x¡Ý1ʱ£¬²»µÈʽf£¨x£©£¾$\frac{2sinx}{{x£¨{x+1}£©}}$ºã³ÉÁ¢£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®ÒÑ֪ʵÊýx£¬yÂú×ãÔ¼ÊøÌõ¼þ$\left\{\begin{array}{l}x-y¡Ý0\\ x+y-4¡Ü0\\ y¡Ý1\end{array}\right.$£¬Ôò$z={£¨{\frac{1}{2}}£©^{-2x+y}}$µÄ×îСֵΪ2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®ÈôÖ±Ïßy=x+aÓëÇúÏßf£¨x£©=x•lnx+bÏàÇУ¬ÆäÖÐa¡¢b¡ÊR£¬Ôòb-a=1£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸