·ÖÎö £¨1£©ÔËÓÃÍÖÔ²µÄÀëÐÄÂʹ«Ê½ºÍ¹ý½¹µã´¹Ö±ÓÚ¶Ô³ÆÖáµÄÏÒ³¤£¬½áºÏa£¬b£¬cµÄ¹ØÏµ½âµÃa£¬b£¬¿ÉµÃÍÖÔ²µÄ·½³Ì£»
£¨II£©·½·¨Ò»¡¢£¨i£©ÌÖÂÛÖ±ÏßABµÄбÂÊΪ0ºÍ²»Îª0£¬ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬AB·½³ÌΪx=my-2£¬´úÈëÍÖÔ²·½³Ì£¬ÔËÓÃΤ´ï¶¨ÀíºÍÅбðʽ´óÓÚ0£¬ÔËÓÃÖ±ÏßµÄбÂʹ«Ê½ÇóбÂÊÖ®ºÍ£¬¼´¿ÉµÃÖ¤£»
£¨ii£©ÇóµÃ¡÷MNFµÄÃæ»ý${S_{¡÷MNF}}=\left|{{S_{¡÷PNF}}-{S_¡÷}_{PMF¡ä}}\right|=\frac{1}{2}\left|{PF}\right|•\left|{{y_1}-{y_2}}\right|$£¬»¯¼òÕûÀí£¬ÔËÓûù±¾²»µÈʽ¿ÉµÃ×î´óÖµ£®
·½·¨¶þ¡¢£¨i£©ÓÉÌâÖª£¬Ö±ÏßABµÄбÂÊ´æÔÚ£¬ÉèÖ±ÏßABµÄ·½³ÌΪ£ºy=k£¨x+2£©£¬ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÁªÁ¢ÍÖÔ²·½³Ì£¬ÏûÈ¥y£¬¿ÉµÃxµÄ·½³Ì£¬ÔËÓÃΤ´ï¶¨ÀíºÍÅбðʽ´óÓÚ0£¬ÔÙÓÉÖ±ÏßµÄбÂʹ«Ê½£¬ÇóµÃ¼´¿ÉµÃÖ¤£»
£¨ii£©ÇóµÃÏÒ³¤|MN|£¬µãFµ½Ö±ÏߵľàÀëd£¬ÔËÓÃÈý½ÇÐεÄÃæ»ý¹«Ê½£¬»¯¼òÕûÀí£¬ÔËÓû»Ôª·¨ºÍ»ù±¾²»µÈʽ£¬¼´¿ÉµÃµ½ËùÇó×î´óÖµ£®
½â´ð ½â£º£¨1£©ÓÉÌâÒâ¿ÉµÃ$e=\frac{c}{a}=\frac{{\sqrt{2}}}{2}$£¬
Áîx=-c£¬¿ÉµÃy=¡Àb$\sqrt{1-\frac{{c}^{2}}{{a}^{2}}}$=¡À$\frac{{b}^{2}}{a}$£¬
¼´ÓÐ$\frac{{2{b^2}}}{a}=\sqrt{2}$£¬ÓÖa2-b2=c2£¬
ËùÒÔ$a=\sqrt{2}£¬b=1$£®
ËùÒÔÍÖÔ²µÄ±ê×¼·½³ÌΪ$\frac{x^2}{2}+{y^2}=1$£»
£¨II£©·½·¨Ò»¡¢£¨i£©µ±ABµÄбÂÊΪ0ʱ£¬ÏÔÈ»¡ÏAFM=¡ÏBFN=0£¬Âú×ãÌâÒ⣻
µ±ABµÄбÂʲ»Îª0ʱ£¬ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬AB·½³ÌΪx=my-2£¬
´úÈëÍÖÔ²·½³Ì£¬ÕûÀíµÃ£¨m2+2£©y2-4my+2=0£¬
Ôò¡÷=16m2-8£¨m2+2£©=8m2-16£¾0£¬ËùÒÔm2£¾2£®
$\left\{\begin{array}{l}{y_1}+{y_2}=\frac{4m}{{{m^2}+2}}\\{y_1}•{y_2}=\frac{2}{{{m^2}+2}}\end{array}\right.$£¬
¿ÉµÃ${k_{MF}}+{k_{NF}}=\frac{y_1}{{{x_1}+1}}+\frac{y_2}{{{x_2}+1}}=\frac{y_1}{{m{y_1}-1}}+\frac{y_2}{{m{y_2}-1}}$=$\frac{{2m{y_1}{y_2}-£¨{y_1}+{y_2}£©}}{{£¨m{y_1}-1£©£¨m{y_2}-1£©}}$
=$\frac{{2m•£¨\frac{2}{{{m^2}+2}}£©-£¨\frac{4m}{{{m^2}+2}}£©}}{{£¨m{y_1}-1£©£¨m{y_2}-1£©}}=0$£®
ÔòkMF+kNF=0£¬¼´¡ÏAFM=¡ÏBFN£»
£¨ii£©${S_{¡÷MNF}}=\left|{{S_{¡÷PNF}}-{S_¡÷}_{PMF¡ä}}\right|=\frac{1}{2}\left|{PF}\right|•\left|{{y_1}-{y_2}}\right|$${=}\frac{1}{2}¡Á1¡Á\frac{{\sqrt{8{m^2}-16}}}{{{m^2}+2}}=\frac{{\sqrt{2£¨{{m^2}-2}£©}}}{{£¨{{m^2}-2}£©+4}}=\frac{{\sqrt{2}}}{{\sqrt{{m^2}-2}+\frac{4}{{\sqrt{{m^2}-2}}}}}¡Ü\frac{{\sqrt{2}}}{4}$
µ±ÇÒ½öµ±$\sqrt{{m^2}-2}=\frac{4}{{\sqrt{{m^2}-2}}}$£¬¼´m2=6£®£¨´ËʱÊʺϡ÷£¾0µÄÌõ¼þ£©È¡µÃµÈºÅ£®
ÔòÈý½ÇÐÎMNFÃæ»ýµÄ×î´óÖµÊÇ$\frac{{\sqrt{2}}}{4}$£®
·½·¨¶þ£¨i£©ÓÉÌâÖª£¬Ö±ÏßABµÄбÂÊ´æÔÚ£¬ÉèÖ±ÏßABµÄ·½³ÌΪ£ºy=k£¨x+2£©£¬
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬
ÁªÁ¢$\left\{\begin{array}{l}y=k£¨x+2£©\\ \frac{x^2}{2}+{y^2}=1\end{array}\right.$£¬ÕûÀíµÃ£¨1+2k2£©x2+8k2x+8k2-2=0£¬
Ôò¡÷=64k4-4£¨1+2k2£©£¨8k2-2£©=8-16k2£¾0£¬ËùÒÔ$0¡Ü{k^2}£¼\frac{1}{2}$£®
$\left\{\begin{array}{l}{x_1}+{x_2}=-\frac{{8{k^2}}}{{1+2{k^2}}}\\{x_1}•{x_2}=\frac{{8{k^2}-2}}{{1+2{k^2}}}\end{array}\right.$£¬
¿ÉµÃ${k_{MF}}+{k_{NF}}=\frac{y_1}{{{x_1}+1}}+\frac{y_2}{{{x_2}+1}}=\frac{{k£¨{x_1}+2£©}}{{{x_1}+1}}+\frac{{k£¨{{x_2}+2}£©}}{{{x_2}+1}}$
=$\frac{{2k{x_1}{x_2}+3k£¨{x_1}+{x_2}£©+4k}}{{£¨{x_1}+1£©£¨{x_2}+1£©}}$$2k{x_1}{x_2}+3k£¨{x_1}+{x_2}£©+4k=2k£¨{\frac{{8{k^2}-2}}{{1+2{k^2}}}}£©+3k£¨{-\frac{{8{k^2}}}{{1+2{k^2}}}}£©+4k=\frac{{16{k^3}-4k-24{k^3}+8{k^3}+4k}}{{1+2{k^2}}}=0$
¡àkMF+kNF=0£¬¼´¡ÏAFM=¡ÏBFN£»
£¨ii£©$\left|{MN}\right|=\sqrt{1+{k^2}}\left|{{x_1}-{x_2}}\right|=\sqrt{1+{k^2}}\frac{{\sqrt{8£¨1-2{k^2}£©}}}{{1+2{k^2}}}$£¬
µãF£¨-1£¬0£©µ½Ö±ÏßMNµÄ¾àÀëΪ$d=\frac{\left|k\right|}{{\sqrt{1+{k^2}}}}$£¬
¼´ÓÐ${S_{¡÷MNF}}=\frac{1}{2}\left|{MN}\right|•d$=$\frac{1}{2}¡Á£¨{\sqrt{1+{k^2}}\frac{{2\sqrt{2}\sqrt{1-2{k^2}}}}{{1+2{k^2}}}}£©¡Á\frac{\left|k\right|}{{\sqrt{1+{k^2}}}}$=$\sqrt{2}\sqrt{\frac{{£¨{1-2{k^2}}£©{k^2}}}{{{{£¨{1+2{k^2}}£©}^2}}}}$£®
Áît=1+2k2£¬Ôòt¡Ê[1£¬2£©£¬u£¨t£©=$\frac{{£¨2-t£©£¨\frac{t-1}{2}£©}}{t^2}=-\frac{{{t^2}-3t+2}}{{2{t^2}}}=-{£¨{\frac{1}{t}}£©^2}+\frac{3}{2}£¨{\frac{1}{t}}£©-\frac{1}{2}$£¬
µ±ÇÒ½öµ±$\frac{1}{t}=\frac{3}{4}$£¬¼´$k=¡À\frac{{\sqrt{6}}}{6}$£¨´ËʱÊʺϡ÷£¾0µÄÌõ¼þ£©Ê±£¬$u{£¨t£©_{max}}=\frac{1}{16}$£¬
¼´${£¨{S_{¡÷MNF}}£©_{max}}=\frac{{\sqrt{2}}}{4}$£¬ÔòÈý½ÇÐÎMNFÃæ»ýµÄ×î´óÖµÊÇ$\frac{{\sqrt{2}}}{4}$£®
µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ·½³ÌµÄÇ󷨣¬×¢ÒâÔËÓÃÀëÐÄÂʹ«Ê½ºÍ¹ý½¹µã´¹Ö±ÓÚ¶Ô³ÆÖáµÄÏÒ³¤£¬¿¼²éÖ±ÏߺÍÍÖÔ²·½³ÌÁªÁ¢£¬ÔËÓÃΤ´ï¶¨ÀíºÍÅбðʽ´óÓÚ0£¬ÒÔ¼°Ö±ÏßµÄбÂʹ«Ê½£¬¿¼²é»ù±¾²»µÈʽµÄÔËÓãºÇó×îÖµ£¬ÊôÓÚÖеµÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\frac{3}{10}$ | B£® | $\frac{7}{20}$ | C£® | $\frac{1}{2}$ | D£® | $\frac{13}{20}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\frac{1}{3}$ | B£® | $\frac{\sqrt{3}}{3}$ | C£® | 3 | D£® | $\sqrt{3}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 400 | B£® | 360 | C£® | 200 | D£® | 100 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com