精英家教网 > 高中数学 > 题目详情
17.已知2a=3,3b=7,则log756=1+$\frac{3}{ab}$.(结果用a,b表示)

分析 2a=3,3b=7,可得a=log23=$\frac{lg3}{lg2}$,b=log37=$\frac{lg7}{lg3}$,ab=$\frac{lg7}{lg2}$=$\frac{1}{lo{g}_{7}2}$.化简即可得出.

解答 解:∵2a=3,3b=7,
∴a=log23=$\frac{lg3}{lg2}$,b=log37=$\frac{lg7}{lg3}$,
∴ab=$\frac{lg7}{lg2}$=$\frac{1}{lo{g}_{7}2}$.
则log756=log7(7×8)=1+3log72=1+$\frac{3}{ab}$.
故答案为:1+$\frac{3}{ab}$.

点评 本题考查了对数与指数的运算性质、对数换底公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.圆(x+1)2+y2=4与圆(x-2)2+(y-1)2=9的位置关系为(  )
A.内切B.外切C.相交D.相离

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.《莱茵德纸草书》Rhind Papyrus是世界上最古老的数学著作之一,书中有一道这样的题目:把10磅面包分给5个人,使每人所得成等差数列,且使较大的三份之和的$\frac{1}{7}$是较小的两份之和,则最小1份为$\frac{1}{6}$磅.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{an}满足2a${\;}_{n+1}={a}_{n}+{a}_{n+2}(n∈{N}^{+})$,它的前n项和为Sn,且a5=5,S7=28.
(Ⅰ)求数列{$\frac{1}{{S}_{n}}$}的前n项和Tn
(Ⅱ)若数列{bn}满足b1=1,b${\;}_{n+1}={b}_{n}+{q}^{{a}_{n}}$(q>0),求数列{bn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知曲线C的极坐标方程是ρ=2,以极点为原点,以极轴为x轴的正半轴,取相同的单位长度,建立平面直角坐标系,直线l的参数方程为$\left\{\begin{array}{l}{x=2-\frac{1}{2}t}\\{y=1+\frac{\sqrt{3}}{2}t}\end{array}$(t为参数).
(Ⅰ)写出直线l的普通方程与曲线C的直角坐标方程;
(Ⅱ)设曲线C经过伸缩变换$\left\{\begin{array}{l}{x′=x}\\{y′=2y}\end{array}$得到曲线C′,曲线C′上任一点为M(x0,y0),求$\sqrt{3}{x}_{0}$+$\frac{1}{2}{y}_{0}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=log2(1-x)+log2(1+x),g(x)=$\frac{1}{2}$-x2
(Ⅰ)求函数f(x)的值域;
(Ⅱ)设h(x)=f(x)+g(x),求证:函数h(x)在(0,1)上有唯一零点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.在如图所示的阳马P-ABCD中,侧棱PD⊥底面ABCD,且PD=CD,点E是PC的中点,连接DE,BD,BE.
(1)证明:DE⊥平面PBC.
(2)试判断四面体EBCD是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,请说明理由;
(3)记阳马P-ABCD的体积为V1,四面体EBCD的体积为V2,求$\frac{{V}_{1}}{{V}_{2}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列说法正确的是(  )
A.若命题p,¬q都是真命题,则命题“p∧q”为真命题
B.命题“若xy=0,则x=0或y=0”的否命题为“若xy≠0,则x≠0或y≠0”
C.“x=-1”是“x2-5x-6=0”的必要不充分条件
D.命题“?x∈R,2x>0”的否定是“?x0∈R,2${\;}^{{x}_{0}}$≤0”

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若f(x)是偶函数,它在[0,+∞)上是减函数,且f(lgx)>f(1),则x的取值范围是(  )
A.($\frac{1}{10}$,1)B.(0,$\frac{1}{10}$)∪(1,+∞)C.(0,1)∪(10,+∞)D.($\frac{1}{10}$,10)

查看答案和解析>>

同步练习册答案