精英家教网 > 高中数学 > 题目详情
7.圆(x+1)2+y2=4与圆(x-2)2+(y-1)2=9的位置关系为(  )
A.内切B.外切C.相交D.相离

分析 由两圆的方程可得圆心坐标及其半径,判断圆心距与两圆的半径和差的关系即可得出.

解答 解:圆C(x+1)2+y2=4的圆心C(-1,0),半径r=2;
圆M(x-2)2+(y-1)2=9的圆心M(2,1),半径 R=3.
∴|CM|=$\sqrt{(2+1)^{2}+(1-0)^{2}}$=$\sqrt{10}$,R-r=3-2=1,R+r=3+2=5.
∴R-r<$\sqrt{10}$<R+r.
∴两圆相交.
故选:C.

点评 本题考查了判断两圆的位置关系的方法,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.《九章算术》是我国古代的数学巨著,其卷第五“商功”有如下的问题:“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高一丈.问积几何?”意思为:“今有底面为矩形的屋脊形状的多面体(如图)”,下底面宽AD=3丈,长AB=4丈,上棱EF=2丈,EF∥平面ABCD.EF与平面ABCD的距离为1丈,问它的体积是(  )
A.4立方丈B.5立方丈C.6立方丈D.8立方丈

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.求下列各式的值
(1)0.001${\;}^{-\frac{1}{3}}$-($\frac{7}{8}$)0+16${\;}^{\frac{3}{4}}$+($\sqrt{2}$•$\root{3}{3}$)6
(2)$\frac{2lg2+lg3}{1+\frac{1}{2}lg0.36+\frac{1}{4}lg16}$        
(3)设x${\;}^{\frac{1}{2}}$+x${\;}^{-\frac{1}{2}}$=3,求x+x-1的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.F1,F2为双曲线的两个焦点,以F2为圆心作圆,已知圆F2经过双曲线的中心,且与双曲线相交于M点,若直线MF1恰与圆F2相切,则该双曲线的离心率e为(  )
A.$\sqrt{2}$+1B.$\sqrt{3}$+2C.$\sqrt{2}$+2D.$\sqrt{3}$+1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=$\sqrt{3}$sinxcosx-sin2x+$\frac{1}{2}$
(Ⅰ)求f(x)的增区间;
(Ⅱ)已知△ABC的三个内角A,B,C所对边为a,b,c.若f(A)=$\frac{1}{2}$,a=$\sqrt{17}$,b=4,求边c的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如图,椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{1}{2}$,过椭圆C上异于顶点的任一点P作圆O:x2+y2=b2的两条切线,切点分别为A,B,若直线AB与x,y轴分别交于M,N两点,则$\frac{{b}^{2}}{|OM{|}^{2}}$+$\frac{{a}^{2}}{|ON{|}^{2}}$的值为(  )
A.1B.$\frac{5}{3}$C.$\frac{3}{2}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的渐近线方程为y=±$\sqrt{3}$x,O为坐标原点,点M($\sqrt{5}$,$\sqrt{3}$)在双曲线上.
(1)求双曲线C的方程.
(2)若直线l与双曲线交于P,Q两点,且$\overrightarrow{OP}$•$\overrightarrow{OQ}$=0,求|OP|2+|OQ|2的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若圆C与圆D:(x+2)2+(y-6)2=1关于直线l:x-y+5=0对称,则圆C的方程为(  )
A.(x+2)2+(y-6)2=1B.(x-6)2+(y+2)2=1C.(x-1)2+(y-3)2=1D.(x+1)2+(y+3)2=1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知2a=3,3b=7,则log756=1+$\frac{3}{ab}$.(结果用a,b表示)

查看答案和解析>>

同步练习册答案