精英家教网 > 高中数学 > 题目详情
18.求下列各式的值
(1)0.001${\;}^{-\frac{1}{3}}$-($\frac{7}{8}$)0+16${\;}^{\frac{3}{4}}$+($\sqrt{2}$•$\root{3}{3}$)6
(2)$\frac{2lg2+lg3}{1+\frac{1}{2}lg0.36+\frac{1}{4}lg16}$        
(3)设x${\;}^{\frac{1}{2}}$+x${\;}^{-\frac{1}{2}}$=3,求x+x-1的值.

分析 (1)根据指数幂的运算性质计算即可,
(2)根据对数的运算性质计算即可,
(3)根据指数幂的运算性质计算即可.

解答 解:(1)原式=$(0.1)^{3×(-\frac{1}{3})}$-1+${2}^{4×\frac{3}{4}}$+$({2}^{\frac{1}{2}})^{6}•({3}^{\frac{1}{3}})^{6}$=10-1+8+8×9=89;
(2)原式=$\frac{2lg2+lg3}{1+\frac{1}{2}lg0.{6}^{2}+\frac{1}{4}lg{2}^{4}}$=$\frac{2lg2+lg3}{1+lg\frac{2×3}{10}+lg2}$=$\frac{2lg2+lg3}{1+lg2+lg3-1+lg2}$=1,
(3)∵x${\;}^{\frac{1}{2}}$+x${\;}^{-\frac{1}{2}}$=3,
∴x+x-1=(x${\;}^{\frac{1}{2}}$+x${\;}^{-\frac{1}{2}}$)2-2=32-2=7

点评 本题考查了对数和指数幂的运算性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.设a=20.3,b=0.32,c=log${\;}_{\sqrt{2}}$2,将a,b,c按从小到大的顺序用不等号连接为b<a<c.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知点H在圆D:(x-2)2+(y+3)2=32上运动,点P坐标为(-6,3),线段PH中点为M.
(1)求点M的轨迹方程;
(2)若直线y=kx与M的轨迹交于B、C两点,点N(0,t)使NB⊥NC,求实数t的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=2sin2x+2$\sqrt{3}$sinxcosx
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)求函数f(x)在区间$[0,\frac{2π}{3}]$上的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=2$\sqrt{3}$sin(x+$\frac{π}{4}$)cos(x+$\frac{π}{4}$)+sin2x+a的最大值为1
(1)求出实数a的值,并指出当x取何值时,f(x)取最大值1
(2)若方程f(x)=m在[0,$\frac{π}{2}$]上有两个不同的实数解,求实数m的取值范围及两个实数解的和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.(1)化简9${\;}^{\frac{3}{2}}$×64${\;}^{\frac{1}{6}}$÷30
(2)化简($\frac{1}{9}$)${\;}^{\frac{1}{2}}$×36${\;}^{-\frac{1}{2}}$÷3-3
(2)化简 $\frac{{a}^{2}}{\sqrt{a}•\root{3}{{a}^{2}}}$(a>0)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.圆心在抛物线y=$\frac{1}{2}$x2上,并且和该抛物线的准线及y轴都相切的圆的标准方程为(x±1)2+(y-$\frac{1}{2}$)2=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.圆(x+1)2+y2=4与圆(x-2)2+(y-1)2=9的位置关系为(  )
A.内切B.外切C.相交D.相离

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.《莱茵德纸草书》Rhind Papyrus是世界上最古老的数学著作之一,书中有一道这样的题目:把10磅面包分给5个人,使每人所得成等差数列,且使较大的三份之和的$\frac{1}{7}$是较小的两份之和,则最小1份为$\frac{1}{6}$磅.

查看答案和解析>>

同步练习册答案