精英家教网 > 高中数学 > 题目详情
10.圆心在抛物线y=$\frac{1}{2}$x2上,并且和该抛物线的准线及y轴都相切的圆的标准方程为(x±1)2+(y-$\frac{1}{2}$)2=1.

分析 由题意设出圆心坐标,由相切列出方程求出圆心坐标和半径,代入圆的标准方程即可.

解答 解:由题意知,设P(t,$\frac{1}{2}$t2)为圆心,且准线方程为y=-$\frac{1}{2}$,
∵与抛物线的准线及y轴相切,
∴|t|=$\frac{1}{2}$t2+$\frac{1}{2}$,
∴t=±1.
∴圆的标准方程为(x±1)2+(y-$\frac{1}{2}$)2=1.
故答案为:(x±1)2+(y-$\frac{1}{2}$)2=1.

点评 本题考查了求圆的标准方程,利用圆与直线相切的条件:圆心到直线的距离等于半径,求出圆心坐标和半径,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知数列{an}是递增的等比数列,且a1+a3=17,a1a3=16
(1)求数列{an}的通项公式;
(2)若bn=log${\;}_{\frac{1}{2}}$an+11,Tn为数列{bn}前n项的绝对值之和,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知A={x|-1<x<2},B={x|x<0或x>3},则A∩B=(  )
A.{x|-1<x<0}B.{x|2<x<3}C.{x|x<-1}D.{x|x>3}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.求下列各式的值
(1)0.001${\;}^{-\frac{1}{3}}$-($\frac{7}{8}$)0+16${\;}^{\frac{3}{4}}$+($\sqrt{2}$•$\root{3}{3}$)6
(2)$\frac{2lg2+lg3}{1+\frac{1}{2}lg0.36+\frac{1}{4}lg16}$        
(3)设x${\;}^{\frac{1}{2}}$+x${\;}^{-\frac{1}{2}}$=3,求x+x-1的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.解不等式:23x-1<2
解不等式:a${\;}^{3{x}^{2}+3x-1}$<a${\;}^{3{x}^{2}+3}$(a>0且a≠1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.F1,F2为双曲线的两个焦点,以F2为圆心作圆,已知圆F2经过双曲线的中心,且与双曲线相交于M点,若直线MF1恰与圆F2相切,则该双曲线的离心率e为(  )
A.$\sqrt{2}$+1B.$\sqrt{3}$+2C.$\sqrt{2}$+2D.$\sqrt{3}$+1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=$\sqrt{3}$sinxcosx-sin2x+$\frac{1}{2}$
(Ⅰ)求f(x)的增区间;
(Ⅱ)已知△ABC的三个内角A,B,C所对边为a,b,c.若f(A)=$\frac{1}{2}$,a=$\sqrt{17}$,b=4,求边c的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的渐近线方程为y=±$\sqrt{3}$x,O为坐标原点,点M($\sqrt{5}$,$\sqrt{3}$)在双曲线上.
(1)求双曲线C的方程.
(2)若直线l与双曲线交于P,Q两点,且$\overrightarrow{OP}$•$\overrightarrow{OQ}$=0,求|OP|2+|OQ|2的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.数列{an}的通项公式an=ncos$\frac{nπ}{2}$+1,前n项和为Sn,则S2014=(  )
A.1005B.1006C.1007D.1008

查看答案和解析>>

同步练习册答案