精英家教网 > 高中数学 > 题目详情
15.F1,F2为双曲线的两个焦点,以F2为圆心作圆,已知圆F2经过双曲线的中心,且与双曲线相交于M点,若直线MF1恰与圆F2相切,则该双曲线的离心率e为(  )
A.$\sqrt{2}$+1B.$\sqrt{3}$+2C.$\sqrt{2}$+2D.$\sqrt{3}$+1

分析 分析知∠F1MF2是直角,又由MF2的长度为半径c,在直角三角形F1MF2中勾股定理建立相应的方程变形求e.

解答 解:易知圆F2的半径为c,又直线MF1恰与圆F2相切,∠F1MF2是直角,
∵|F1F2|=2c,|MF2|=c,|F1M|=2a+c,
∴在直角三角形F1MF2中有
(2a+c)2+c2=4c2
即e2+2e-2=0,
∵e>1,∴e=$\sqrt{3}$+1.
选选D.

点评 考查焦点三角形的几何特征与椭圆的定义,属于训练基本概念的题型,根据几何特征与定义将三边用参数a,b,c表示出来再根据离心率公式进行变形,训练变形的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.函数f(x)的定义域为R,下列说法中请把正确的序号为(1)(3)
(1)若f(x)是偶函数,则f(-2)=f(2)
(2)若f(-2)=f(2),则f(x)是偶函数
(3)f(-2)≠f(2),则f(x)不是偶函数
(4)若f(-2)=f(2),则f(x)不是奇函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=2sin2x+2$\sqrt{3}$sinxcosx
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)求函数f(x)在区间$[0,\frac{2π}{3}]$上的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.(1)化简9${\;}^{\frac{3}{2}}$×64${\;}^{\frac{1}{6}}$÷30
(2)化简($\frac{1}{9}$)${\;}^{\frac{1}{2}}$×36${\;}^{-\frac{1}{2}}$÷3-3
(2)化简 $\frac{{a}^{2}}{\sqrt{a}•\root{3}{{a}^{2}}}$(a>0)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.圆心在抛物线y=$\frac{1}{2}$x2上,并且和该抛物线的准线及y轴都相切的圆的标准方程为(x±1)2+(y-$\frac{1}{2}$)2=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知全集U={1,2,3,4,5,6,7,8},a={1,2,3,4},B={3,4,5,6,7,8},则(∁UA)∩(∁UB)=(  )
A.{1,2}B.{3,4}C.{5,6,7}D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.圆(x+1)2+y2=4与圆(x-2)2+(y-1)2=9的位置关系为(  )
A.内切B.外切C.相交D.相离

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知f(x)是定义在R上的偶函数,且当x>0时,f(x)=lg$\frac{{2}^{x}}{{2}^{x}+1}$,若对任意实数t∈[$\frac{1}{2}$,2],都有f(t+a)-f(t-1)≥0恒成立,则实数a的取值范围[0,+∞)∪(-∞,-3]∪{-1}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{an}满足2a${\;}_{n+1}={a}_{n}+{a}_{n+2}(n∈{N}^{+})$,它的前n项和为Sn,且a5=5,S7=28.
(Ⅰ)求数列{$\frac{1}{{S}_{n}}$}的前n项和Tn
(Ⅱ)若数列{bn}满足b1=1,b${\;}_{n+1}={b}_{n}+{q}^{{a}_{n}}$(q>0),求数列{bn}的通项公式.

查看答案和解析>>

同步练习册答案