精英家教网 > 高中数学 > 题目详情
4.已知f(x)是定义在R上的偶函数,且当x>0时,f(x)=lg$\frac{{2}^{x}}{{2}^{x}+1}$,若对任意实数t∈[$\frac{1}{2}$,2],都有f(t+a)-f(t-1)≥0恒成立,则实数a的取值范围[0,+∞)∪(-∞,-3]∪{-1}.

分析 当x>0时,f(x)=)=lg$\frac{{2}^{x}}{1+{2}^{x}}$=lg$\frac{1}{1+{2}^{-x}}$,可得f(x)在(0,+∞)单调递增.由于对任意实数t∈[$\frac{1}{2}$,2],都有f(t+a)-f(t-1)>0即f(t+a)>f(t-1)恒成立,又f(x)是定义在R上的偶函数,可得|t+a|>|t-1|,转化为(2a+2)t+a2-1>0,利用一次函数的单调性即可得出.

解答 解:当x>0时,f(x)=)=lg$\frac{{2}^{x}}{1+{2}^{x}}$=lg$\frac{1}{1+{2}^{-x}}$,
∵y=2-x是减函数,可得f(x)在(0,+∞)单调递增.
∵对任意实数t∈[$\frac{1}{2}$,2],都有f(t+a)-f(t-1)>0即f(t+a)>f(t-1)恒成立,
又f(x)是定义在R上的偶函数,
∴|t+a|>|t-1|,⇒(2a+2)t+a2-1>0在t∈[$\frac{1}{2}$,2]上恒成立,
 $\left\{\begin{array}{l}{\frac{1}{2}(2a+2){+a}^{2}-1≥0}\\{2(2a+2)+{a}^{2}-1≥0}\end{array}\right.$,
化简得$\left\{\begin{array}{l}{{a}^{2}+a≥0}\\{{a}^{2}+4a+3≥0}\end{array}\right.$解得a≥0或a≤-3或a=-1
故答案为:[0,+∞)∪(-∞,-3]∪{-1}.

点评 本题考查了复合函数的单调性、奇偶性,恒成立问题的处理,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.与函数y=x表示同一个函数是(  )
A.y=$\sqrt{{x}^{2}}$B.y=a${\;}^{lo{g}_{a}x}$C.y=$\frac{{x}^{2}}{x}$D.y=$\root{3}{{x}^{3}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.F1,F2为双曲线的两个焦点,以F2为圆心作圆,已知圆F2经过双曲线的中心,且与双曲线相交于M点,若直线MF1恰与圆F2相切,则该双曲线的离心率e为(  )
A.$\sqrt{2}$+1B.$\sqrt{3}$+2C.$\sqrt{2}$+2D.$\sqrt{3}$+1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如图,椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{1}{2}$,过椭圆C上异于顶点的任一点P作圆O:x2+y2=b2的两条切线,切点分别为A,B,若直线AB与x,y轴分别交于M,N两点,则$\frac{{b}^{2}}{|OM{|}^{2}}$+$\frac{{a}^{2}}{|ON{|}^{2}}$的值为(  )
A.1B.$\frac{5}{3}$C.$\frac{3}{2}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的渐近线方程为y=±$\sqrt{3}$x,O为坐标原点,点M($\sqrt{5}$,$\sqrt{3}$)在双曲线上.
(1)求双曲线C的方程.
(2)若直线l与双曲线交于P,Q两点,且$\overrightarrow{OP}$•$\overrightarrow{OQ}$=0,求|OP|2+|OQ|2的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.两圆x2+y2+4x-6y+12=0与x2+y2-2x-14y+15=0公共弦所在直线的方程是(  )
A.x-3y+1=0B.6x+2y-1=0C.6x+8y-3=0D.3x-y+5=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若圆C与圆D:(x+2)2+(y-6)2=1关于直线l:x-y+5=0对称,则圆C的方程为(  )
A.(x+2)2+(y-6)2=1B.(x-6)2+(y+2)2=1C.(x-1)2+(y-3)2=1D.(x+1)2+(y+3)2=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若{an}是等差数列,首项a1>0,a1007•a1008<0,a1007+a1008>0则使前n项和Sn>0成立的最大自然数n是(  )
A.2 012B.2 013C.2 014D.2 015

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.计算sin140°cos50°+sin130°cos40°的值是(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.1D.-1

查看答案和解析>>

同步练习册答案