分析 (1)根据等比数列的定义即可求出,
(2)先化简bn,当1≤n≤6时,bn>0;当n≥7时,bn<0.分类计算即可.
解答 解:(1)由a1+a3=17,a1a3=16,解得a1=1,a3=16,或a1=16,a3=1,
∵数列{an}是递增的等比数列,
∴a1=1,a3=16,
∴q2=$\frac{{a}_{3}}{{a}_{1}}$=16,解得q=4
∴an=4n-1,
(2)bn=log${\;}_{\frac{1}{2}}$an+11=13-2n,
由bn=13-2n≥0,得n≤$\frac{13}{2}$,
∴当1≤n≤6时,bn>0;当n≥7时,bn<0.
当1≤n≤6时,Tn=|b1|+|b2|+|b3|+…+|bn|=b1+b2+b3+…+bn=12n-n2,
当n≥7时,Tn=|b1|+|b2|+|b3|+…+|bn|=b1+b2+b3+…+b6-(b7+b8+b9+…+bn)=2S6-Sn=n2-12n+72,
综上可知:Tn=$\left\{\begin{array}{l}{12n-{n}^{2},1≤n≤6}\\{{n}^{2}-12n+72,n≥7}\end{array}\right.$
点评 本题考查了等比数列的通项公式和等比数列的前n项和公式,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2$\sqrt{3}$ | B. | 4 | C. | 3$\sqrt{3}$ | D. | 4$\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{4}$ | B. | $\frac{5}{4}$ | C. | $\frac{7}{4}$ | D. | $\frac{9}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com