精英家教网 > 高中数学 > 题目详情
20.已知数列{an}是递增的等比数列,且a1+a3=17,a1a3=16
(1)求数列{an}的通项公式;
(2)若bn=log${\;}_{\frac{1}{2}}$an+11,Tn为数列{bn}前n项的绝对值之和,求Tn

分析 (1)根据等比数列的定义即可求出,
(2)先化简bn,当1≤n≤6时,bn>0;当n≥7时,bn<0.分类计算即可.

解答 解:(1)由a1+a3=17,a1a3=16,解得a1=1,a3=16,或a1=16,a3=1,
∵数列{an}是递增的等比数列,
∴a1=1,a3=16,
∴q2=$\frac{{a}_{3}}{{a}_{1}}$=16,解得q=4
∴an=4n-1
(2)bn=log${\;}_{\frac{1}{2}}$an+11=13-2n,
由bn=13-2n≥0,得n≤$\frac{13}{2}$,
∴当1≤n≤6时,bn>0;当n≥7时,bn<0.
当1≤n≤6时,Tn=|b1|+|b2|+|b3|+…+|bn|=b1+b2+b3+…+bn=12n-n2
当n≥7时,Tn=|b1|+|b2|+|b3|+…+|bn|=b1+b2+b3+…+b6-(b7+b8+b9+…+bn)=2S6-Sn=n2-12n+72,
综上可知:Tn=$\left\{\begin{array}{l}{12n-{n}^{2},1≤n≤6}\\{{n}^{2}-12n+72,n≥7}\end{array}\right.$

点评 本题考查了等比数列的通项公式和等比数列的前n项和公式,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)右顶点与右焦点的距离为$\sqrt{3}$-1,短轴长为2$\sqrt{2}$.
(Ⅰ)求椭圆的方程;
(Ⅱ)过左焦点F的直线与椭圆分别交于A、B两点,若△OAB(O为直角坐标原点)的面积为$\frac{3\sqrt{2}}{4}$,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知在直三棱柱ABC-A1B1C1中,∠BAC=120°,AB=AC=1,AA1=2,若棱AA1在正视图的投影面α内,且AB与投影面α所成角为θ(30°≤θ≤60°),设正视图的面积为m,侧视图的面积为n,当θ变化时,mn的最大值是(  )
A.2$\sqrt{3}$B.4C.3$\sqrt{3}$D.4$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设a=20.3,b=0.32,c=log${\;}_{\sqrt{2}}$2,将a,b,c按从小到大的顺序用不等号连接为b<a<c.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设函数f(x)=kax-a-x(a>0)且a≠0)是奇函数.
(1)求k的值;
(2)若f(1)>0,解关于x的不等式f(x+2)+f(x-4)>0
(3)若f(1)=$\frac{3}{2}$且对任意的x∈[1,+∞),不等式a2x+a-2x-2mf(x)+2≥0恒成立,求实数m取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.函数f(x)的定义域为R,下列说法中请把正确的序号为(1)(3)
(1)若f(x)是偶函数,则f(-2)=f(2)
(2)若f(-2)=f(2),则f(x)是偶函数
(3)f(-2)≠f(2),则f(x)不是偶函数
(4)若f(-2)=f(2),则f(x)不是奇函数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知抛物线y2=2x上有两点A(x1,y1),B(x2,y2)关于直线x+y=m对称,且y1y2=-$\frac{1}{2}$,则m的值等于(  )
A.$\frac{3}{4}$B.$\frac{5}{4}$C.$\frac{7}{4}$D.$\frac{9}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知点H在圆D:(x-2)2+(y+3)2=32上运动,点P坐标为(-6,3),线段PH中点为M.
(1)求点M的轨迹方程;
(2)若直线y=kx与M的轨迹交于B、C两点,点N(0,t)使NB⊥NC,求实数t的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.圆心在抛物线y=$\frac{1}{2}$x2上,并且和该抛物线的准线及y轴都相切的圆的标准方程为(x±1)2+(y-$\frac{1}{2}$)2=1.

查看答案和解析>>

同步练习册答案