精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中,平面 平面,四边形为正方形,为等边三角形,中点,平面与棱交于点.

Ⅰ)求证:

Ⅱ)求证:平面

(III)记四棱锥的体积为,四棱锥的体积为,直接写出的值.

【答案】(1)见解析(2)见解析(3)

【解析】

(Ⅰ)由为正方形,可得.再由线面平行的判定可得平面..再由面面平行的性质可得
(Ⅱ)由为正方形,可得.结合面面垂直的性质可得平面.从而得到..再由已知证得.由线面垂直的判定可得平面
(Ⅲ)由(Ⅰ)知,,利用等积法把表示,则的值可求.

(I)证明:因为正方形,所以.

因为平面平面

所以平面.

因为平面平面平面

所以.

(II)证明:因为正方形,所以.

因为平面平面平面平面平面

所以平面.

因为平面

所以.

因为为等边三角形,中点,

所以.

因为平面平面

所以平面.

III)解:由(Ⅰ)知,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,某园林单位准备绿化一块直径为BC的半圆形空地,ABC外的地方种草,ABC的内接正方形PQRS为一水池,其余的地方种花.若BCa,∠ABC,设ABC的面积为S1,正方形的面积为S2

(1)a表示S1S2

(2)当a固定,变化时,求取最小值时的角

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》中盈不足章中有这样一则故事:今有良马与驽马发长安,至齐. 齐去长安三千里. 良马初日行一百九十三里,日增一十二里;驽马初日行九十七里,日减二里.为了计算每天良马和驽马所走的路程之和,设计框图如下图. 若输出的 的值为 350,则判断框中可填( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示, 平面,平面平面,四边形为正方形,, ,点在棱上.

(1)若的中点的中点,证明:平面平面

(2)设,是否存在,使得平面平面?若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某县畜牧技术员张三和李四9年来一直对该县山羊养殖业的规模进行跟踪调查,张三提供了该县某山羊养殖场年养殖数量y(单位:万只)与相成年份x(序号)的数据表和散点图(如图所示),根据散点图,发现y与x有较强的线性相关关系,李四提供了该县山羊养殖场的个数z(单位:个)关于x的回归方程.

(1)根据表中的数据和所给统计量,求y关于x的线性回归方程(参考统计量:);

(2)试估计:①该县第一年养殖山羊多少万只?

②到第几年,该县山羊养殖的数量与第一年相比缩小了?

附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直线与抛物线交于两点,直线轴交于点,且直线恰好平分.

1)求的值;

2)设是直线上一点,直线交抛物线于另一点,直线交直线于点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图已知抛物线的焦点坐标为,过的直线交抛物线两点,直线分别与直线相交于两点

(1)求抛物线的方程;

(2)证明△ABO与MNO的面积之比为定值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商品的进价为每件元,售价为每件元,每个月可卖出件;如果每件商品在该售价的基础上每上涨元,则每个月少卖件(每件售价不能高于元).设每件商品的售价上涨元(为正整数),每个月的销售利润为元.

(1)求的函数的函数关系式并直接写出自变量的取值范围;

(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂家具车间做AB型两类桌子,每张桌子需木工和漆工两道工序完成.已知木工做一张AB型桌子分别需要1小时和2小时,漆工油漆一张AB型桌子分别需要3小时和1小时;又知木工和漆工每天工作分别不得超过8小时和9小时,设该厂每天做AB型桌子分别为x张和y张.

1)试列出xy满足的关系式,并画出相应的平面区域;

2)若工厂做一张AB型桌子分别获得利润为2千元和3千元,那么怎样安排AB型桌子生产的张数,可使得所得利润最大,最大利润是多少?

查看答案和解析>>

同步练习册答案