精英家教网 > 高中数学 > 题目详情

【题目】某县畜牧技术员张三和李四9年来一直对该县山羊养殖业的规模进行跟踪调查,张三提供了该县某山羊养殖场年养殖数量y(单位:万只)与相成年份x(序号)的数据表和散点图(如图所示),根据散点图,发现y与x有较强的线性相关关系,李四提供了该县山羊养殖场的个数z(单位:个)关于x的回归方程.

(1)根据表中的数据和所给统计量,求y关于x的线性回归方程(参考统计量:);

(2)试估计:①该县第一年养殖山羊多少万只?

②到第几年,该县山羊养殖的数量与第一年相比缩小了?

附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为

【答案】(1);(2)见解析.

【解析】

1)根据题设中的数据,求得,利用公式,进而得到,即可得到回归直线的方程;

2)求得第年山羊养殖的只数,①代入,即可得到第一年的山羊的养殖只数;②根据题意,得,求得,即可得到结论

1)设关于的线性回归方程为

,所以

所以关于的线性回归方程为

2)估计第年山羊养殖的只数

①第1年山羊养殖的只数为,故该县第一年养殖山羊约万只;

②由题意,得,整理得

解得(舍去)

所以到第10年该县山羊养殖的数量相比第1年缩小了。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程是,曲线的极坐标方程为.

(1)求曲线的直角坐标方程;

(2)设曲线交于点,曲线轴交于点,求线段的中点到点的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数上的偶函数,上的奇函数,且.

1)求的解析式;

2)若函数上只有一个零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种产品的质量用其质量指标值来衡量)质量指标值越大表明质量越好,且质量指标值大于或等于102的产品为优质品.现用两种新配方(分别称为配方和配方)做试验,各生产了100件这种产品,并测量了每件产品的质量指标值,得到下面试验结果:

配方的频数分布表:

指标值分组

[90,94

[94,98

[98,102

[102,106

[106,110]

频数

8

20

42

22

8

配方的频数分布表:

指标值分组

[90,94

[94,98

[98,102

[102,106]

[106,110]

频数

4

12

42

32

10

1)分别估计用配方、配方生产的产品的优质品率;

2)已知用配方生产的一件产品的利润(单位:元)与其质量指标值的关系为,估计用配方生产的一件产品的利润大于的概率,并求用配方生产的上述件产品的平均利润.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知A(-2,0),B(2,0)为椭圆C的左、右顶点,F为其右焦点,P是椭圆C上异于A,B的动点,且△APB面积的最大值为

(Ⅰ)求椭圆C的方程;

(Ⅱ)直线AP与椭圆在点B处的切线交于点D,当点P在椭圆上运动时,求证:以BD为直径的圆与直线PF恒相切.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左焦点,离心率为,点为椭圆上任一点,且的最小值为.

(1)求椭圆的方程;

(2)若直线过椭圆的左焦点,与椭圆交于两点,且的面积为,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从你所在班级任意选出6名同学,调查他们的出生月份,假设出生在一月,二月……十二月是等可能的.设事件至少有两人出生月份相同,设计一种试验方法,模拟20次,估计事件发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】盒子中仅有4个白球和5个黑球,从中任意取出一个球.

1取出的球是黄球是什么事件?它的概率是多少?

2取出的球是白球是什么事件?它的概率是多少?

3取出的球是白球或黑球是什么事件?它的概率是多少?

4)设计一个用计算器或计算机模拟上面取球的试验,并模拟100次,估计取出的球是白球的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图为一个摩天轮示意图。该摩天轮圆半径为4.8m,圆上最低点与地面距离为0.8m60s转动一周.图中OA与地面垂直。以O为始边,逆时针转动0角到OBB点与地面的距离为hm.

1)求h的函数解析式;

(2)设从OA开始转动,经过ts到达OB,求ht的函数解析式.

查看答案和解析>>

同步练习册答案