【题目】已知椭圆
:
的左焦点
,离心率为
,点
为椭圆
上任一点,且
的最小值为
.
(1)求椭圆
的方程;
(2)若直线
过椭圆的左焦点
,与椭圆交于
两点,且
的面积为
,求直线
的方程.
【答案】(1)
(2)
或
.
【解析】
(1)设椭圆的标准方程为:
1(a>b>0),由离心率为
,点P为椭圆C上任意一点,且|PF|的最小值为
1,求出a2=2,b2=1,由此能求出椭圆C的方程;(2)设
的方程为:
,代入
得:
,由弦长公式与点到线的距离公式分别求得
,由面积公式得
的方程即可求解
(1)设椭圆的标准方程为:
1(a>b>0),
∵离心率为
,∴
,∴a
,
∵点P为椭圆C上任意一点,且|PF|的最小值为
1,
∴c=1,∴a2=b2+c2=b2+1,
解得a2=2,b2=1,
∴椭圆C的方程为
1.
(2)因
,
与
轴不重合,故设
的方程为:
,
代入
得:
,
其
恒成立,设
,则有
,
![]()
又
到
的距离![]()
,解得
,
的方程为:
或
.
科目:高中数学 来源: 题型:
【题目】已知某射击运动员每次击中目标的概率都是0.8,现采用随机模拟的方法估计该运动员射击4次,至少击中3次的概率:先由计算器给出0到9之间取整数值的随机数,指定0,1表示没有击中目标,2,3,4,5,6,7,8,9表示击中目标,以4个随机数为一组,代表射击4次的结果,经随机模拟产生了20组随机数,根据以下数据估计该运动员射击4次,至少击中3次的概率为( )
7527 0293 7140 9857
0347 4373 8636 6947
1417 4698 0371 6233
2616 8045 6011 3661
9597 7424 7610 4281
A.0.852B.0.8192C.0.8D.0.75
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】扇形AOB中心角为
,所在圆半径为
,它按如图(Ⅰ)(Ⅱ)两种方式有内接矩形CDEF.
![]()
(1)矩形CDEF的顶点C、D在扇形的半径OB上,顶点E在圆弧AB上,顶点F在半径OA上,设
;
(2)点M是圆弧AB的中点,矩形CDEF的顶点D、E在圆弧AB上,且关于直线OM对称,顶点C、F分别在半径OB、OA上,设
;
试研究(1)(2)两种方式下矩形面积的最大值,并说明两种方式下哪一种矩形面积最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某县畜牧技术员张三和李四9年来一直对该县山羊养殖业的规模进行跟踪调查,张三提供了该县某山羊养殖场年养殖数量y(单位:万只)与相成年份x(序号)的数据表和散点图(如图所示),根据散点图,发现y与x有较强的线性相关关系,李四提供了该县山羊养殖场的个数z(单位:个)关于x的回归方程
.
![]()
(1)根据表中的数据和所给统计量,求y关于x的线性回归方程(参考统计量:
);
(2)试估计:①该县第一年养殖山羊多少万只?
②到第几年,该县山羊养殖的数量与第一年相比缩小了?
附:对于一组数据
,其回归直线
的斜率和截距的最小二乘估计分别为
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点
,点
,点
,动圆
与
轴相切于点
,过点
的直线
与圆
相切于点
,过点
的直线
与圆
相切于点
(
均不同于点
),且
与
交于点
,设点
的轨迹为曲线
.
(1)证明:
为定值,并求
的方程;
(2)设直线
与
的另一个交点为
,直线
与
交于
两点,当
三点共线时,求四边形
的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(1)掷两枚质地均匀的骰子,计算点数和为7的概率;
(2)利用随机模拟的方法,试验120次,计算出现点数和为7的频率;
(3)所得频率与概率相差大吗?为什么会有这种差异?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com