精英家教网 > 高中数学 > 题目详情
5.已知正方形ABCD的边长为1,设$\overrightarrow{AB}=\vec a,\overrightarrow{BC}=\overrightarrow b,\overrightarrow{AC}=\vec c$,则$\vec a-\vec b+\vec c$的模为2.

分析 利用向量的三角形法则将所求变形,利用正方形的边对应的向量表示,即可求模.

解答 解:正方形如图,$\vec a-\vec b+\vec c$=$\overrightarrow{a}-\overrightarrow{b}+\overrightarrow{a}+\overrightarrow{b}$=2$\overrightarrow{a}$,
所以$\vec a-\vec b+\vec c$的模为2;
故答案为:2.

点评 本题考查了平面向量的三角形法则;解得本题的关键是将所求利用正方形的两边对应的向量表示.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.由9个互不相等的正数组成的矩阵$({\begin{array}{l}{{a_{11}}}&{{a_{12}}}&{{a_{13}}}\\{{a_{21}}}&{{a_{22}}}&{{a_{23}}}\\{{a_{31}}}&{{a_{32}}}&{{a_{33}}}\end{array}})$中,每行中的三个数成等差数列,且a11+a12+a13,a21+a22+a23,a31+a32+a33成等比数列,下列四个判断正确的个数为4个.
①第2列a12,a22,a32必成等比数列       
②第1列a11,a21,a31不一定成等比数列
③a12+a32>a21+a23  
④若9个数之和等于9,则a22<1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知M是△ABC内的一点,且|AB||AC|=4,∠BAC=30°,若△MBC,△MCA,△MAB的面积分别为$\frac{1}{2}$、x、y,则$\frac{1}{x}$+$\frac{4}{y}$的最小值为(  )
A.20B.19C.18D.16

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设数列{an}的前n项和为Sn,若Sn=2n-3,则数列{an}的通项公式为${a}_{n}=\left\{\begin{array}{l}{-1,n=1}\\{{2}^{n-1},n≥2}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知α为第二象限角,$sinα+cosα=\frac{1}{5}$,则cos2α=(  )
A.$-\frac{12}{25}$B.$\frac{7}{5}$C.$\frac{1}{25}$D.$-\frac{7}{25}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.命题p:?x∈R,使得3x>x;命题q:若函数y=f(x-1)为偶函数,则函数y=f(x)关于直线x=1对称,则(  )
A.p∨q真B.p∧q真C.¬p真D.¬q假

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.化简(x-4)4+4(x-4)3+6(x-4)2+4(x-4)+1得(  )
A.x4B.(x-3)4C.(x+1)4D.x5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.复数z=$\frac{(1+i)^{2}}{1-i}$的共轭复数所对应的点位于复平面的(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知向量$\overrightarrow{a}$=(1,2)与$\overrightarrow{b}$=(λ,1)垂直,则λ=-2.

查看答案和解析>>

同步练习册答案