精英家教网 > 高中数学 > 题目详情
19.已知向量$\overrightarrow{a}$=(3,0),$\overrightarrow{b}$=(-5,5),$\overrightarrow{c}$=(2,k)
(1)求向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角;
(2)若$\overrightarrow{b}$∥$\overrightarrow{c}$,求k的值;
(3)若$\overrightarrow{b}$⊥($\overrightarrow{a}+\overrightarrow{c}$),求k的值.

分析 (1)根据向量的坐标运算和向量的夹角公式即可求出,
(2)根据向量的平行的条件得到-5k=5×2,解得即可,
(3)根据向量的垂直的条件得到-5×5+5k=0,解得即可.

解答 解:(1)设向量向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为θ,
∵$\overrightarrow{a}$=(3,0),$\overrightarrow{b}$=(-5,5),
∴$\overrightarrow{a}•\overrightarrow{b}$=3×(-5)+0×5=-15,|$\overrightarrow{a}$|=$\sqrt{{3}^{2}+{0}^{2}}$=3,|$\overrightarrow{b}$|=5$\sqrt{2}$
∴cosθ=$\frac{\overrightarrow{a}•\overrightarrow{b}}{|\overrightarrow{a}|•|\overrightarrow{b}|}$=$\frac{-15}{3×5\sqrt{2}}$=-$\frac{\sqrt{2}}{2}$,
又∵θ∈[0,π],
∴$θ=\frac{3}{4}π$
(2)∵$\overrightarrow{b}$∥$\overrightarrow{c}$,
∴-5k=5×2,
∴k=-2
(3)∵$\overrightarrow{a}+\overrightarrow{c}$=(5,k),
又$\overrightarrow{b}$⊥($\overrightarrow{a}+\overrightarrow{c}$),
∴$\overrightarrow{b}$•($\overrightarrow{a}+\overrightarrow{c}$)=0,
∴-5×5+5k=0,
∴k=5

点评 本题考查了向量的夹角公式和向量的垂直和平行的条件,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.函数f(x)=Acos(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示,且f($\frac{π}{2}$)=-$\frac{2}{3}$,则函数f(x)的表达式为(  )
A.f(x)=$\frac{2}{3}$cos(3x-$\frac{π}{4}$)B.f(x)=$\frac{2}{3}$cos(3x+$\frac{π}{4}$)C.f(x)=$\frac{2}{3}$$\sqrt{2}$cos(3x+$\frac{π}{4}$)D.f(x)=$\frac{2}{3}$$\sqrt{2}$cos(3x-$\frac{π}{4}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,在平行四边形ABCD中,AD⊥BD,AD=2,BD=4,点M、N分别为BD、BC的中点,将其沿对角线BD折起成四面体QBCD,使平面QBD⊥平面BCD,P为QC的中点.

(1)求证:PM⊥BD;
(2)求点D到平面QMN的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设一个球形西瓜,切下一刀后所得切面圆的半径为4,球心到切面圆心的距离为3,则该西瓜的体积为(  )
A.100πB.$\frac{256}{3}$πC.$\frac{100}{3}$πD.$\frac{500}{3}$π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.底面是正多边形,顶点在底面的射影是底面中心的棱锥叫正棱锥.如图,半球内有一内接正四棱锥S-ABCD,该四棱锥的体积为$\frac{4\sqrt{2}}{3}$,则该四棱锥的外接球的体积为(  )
A.$\frac{4\sqrt{2}}{3}$πB.$\frac{8\sqrt{2}}{3}$πC.$\frac{32\sqrt{2}}{3}$πD.$\frac{64\sqrt{2}}{3}π$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在等比数列{an}中,若a1=3,a4=24,则的q值为(  )
A.8B.7C.2$\sqrt{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.根据平面几何的勾股定理,试类比出三棱锥P-ABC(PA、PB、PC两两垂直)中相应的结论是:S2△ABC=S2△PBC+S2△APC+S2△ABP

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在△ABC中,分别根据下列条件解三角形,其中有两个解的是(  )
A.a=7,b=14,A=30°B.a=20,b=26,A=150°
C.a=30,b=40,A=30°D.a=72,b=60,A=135°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知a>0,b>0,求证:$\frac{{x}^{2}}{a}$+$\frac{{y}^{2}}{b}$≥$\frac{(x+y)^{2}}{a+b}$.

查看答案和解析>>

同步练习册答案