| A. | f(x)=$\frac{2}{3}$cos(3x-$\frac{π}{4}$) | B. | f(x)=$\frac{2}{3}$cos(3x+$\frac{π}{4}$) | C. | f(x)=$\frac{2}{3}$$\sqrt{2}$cos(3x+$\frac{π}{4}$) | D. | f(x)=$\frac{2}{3}$$\sqrt{2}$cos(3x-$\frac{π}{4}$) |
分析 由函数的图象的顶点坐标以及所给的图象求出A,由周期求出ω,由特殊点的坐标求出φ和A的值,可得函数的解析式.
解答 解:根据函数f(x)=Acos(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分图象,
再根据所给的选项,可得$\frac{T}{2}$=$\frac{π}{ω}$=$\frac{11π}{12}$-$\frac{7π}{12}$,∴ω=3.
再根据图象经过点($\frac{7π}{12}$,0),可得3•$\frac{7π}{12}$+φ=kπ+$\frac{π}{2}$,k∈Z,∴φ=-$\frac{π}{4}$,
∴函数f(x)=Acos(3x-$\frac{π}{4}$),再把点($\frac{π}{2}$,-$\frac{2}{3}$)代入,可得-$\frac{2}{3}$=Asin(3•$\frac{π}{2}$-$\frac{π}{4}$)=-$\frac{\sqrt{2}}{2}$A,可得A=$\frac{2\sqrt{2}}{3}$,
故选:D.
点评 本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由函数的图象的顶点坐标以及所给的图象求出A,由周期求出ω,由特殊点的坐标求出φ和A的值,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com