精英家教网 > 高中数学 > 题目详情
1.函数f(x)=Acos(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示,且f($\frac{π}{2}$)=-$\frac{2}{3}$,则函数f(x)的表达式为(  )
A.f(x)=$\frac{2}{3}$cos(3x-$\frac{π}{4}$)B.f(x)=$\frac{2}{3}$cos(3x+$\frac{π}{4}$)C.f(x)=$\frac{2}{3}$$\sqrt{2}$cos(3x+$\frac{π}{4}$)D.f(x)=$\frac{2}{3}$$\sqrt{2}$cos(3x-$\frac{π}{4}$)

分析 由函数的图象的顶点坐标以及所给的图象求出A,由周期求出ω,由特殊点的坐标求出φ和A的值,可得函数的解析式.

解答 解:根据函数f(x)=Acos(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分图象,
再根据所给的选项,可得$\frac{T}{2}$=$\frac{π}{ω}$=$\frac{11π}{12}$-$\frac{7π}{12}$,∴ω=3.
再根据图象经过点($\frac{7π}{12}$,0),可得3•$\frac{7π}{12}$+φ=kπ+$\frac{π}{2}$,k∈Z,∴φ=-$\frac{π}{4}$,
∴函数f(x)=Acos(3x-$\frac{π}{4}$),再把点($\frac{π}{2}$,-$\frac{2}{3}$)代入,可得-$\frac{2}{3}$=Asin(3•$\frac{π}{2}$-$\frac{π}{4}$)=-$\frac{\sqrt{2}}{2}$A,可得A=$\frac{2\sqrt{2}}{3}$,
故选:D.

点评 本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由函数的图象的顶点坐标以及所给的图象求出A,由周期求出ω,由特殊点的坐标求出φ和A的值,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.判断下列命题的真假,如果是真命题给出证明;如果是假命题,举出反例或者说明理由.
(1)?x∈(0,+∞),lgx<x-1;
(2)?x∈(0,$\frac{π}{2}$),1<sinx+cosx≤$\sqrt{2}$;
(3)?x0∈(0,$\frac{π}{2}$),tanx0≤x0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数f(x)=2sin(ωx+φ)(ω>0,且|φ|<$\frac{π}{2}$)的部分图象如图所示,则f($\frac{π}{2}$)的值为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.袋中装有6只乒乓球,其中4只白的,2只红的,从中任取2只球:
(1)均为白球的概率是多少?
(2)取出的球一只白球一只红球的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.△ABC中.设$\overrightarrow{CB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow{b}$,且|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=$\sqrt{3}$,$\overrightarrow{a}$•$\overrightarrow{b}$=-$\sqrt{3}$,则c=$\sqrt{7-2\sqrt{3}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知集合M={y|y=x2+1,x∈R},N={x|y=$\sqrt{x-2}$},则M∩N=[2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知f(x)=log0.2(x2+2x-3).
(1)求f(x)的定义域;
(2)若f(x)≥log0.2(x2-4),求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知i是虚数单位,若|a-i|=$\sqrt{3}$a,则实数a=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知向量$\overrightarrow{a}$=(3,0),$\overrightarrow{b}$=(-5,5),$\overrightarrow{c}$=(2,k)
(1)求向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角;
(2)若$\overrightarrow{b}$∥$\overrightarrow{c}$,求k的值;
(3)若$\overrightarrow{b}$⊥($\overrightarrow{a}+\overrightarrow{c}$),求k的值.

查看答案和解析>>

同步练习册答案