【题目】已知函数.
(Ⅰ)若函数在时取得极值,求实数的值;
(Ⅱ)当时,求零点的个数.
【答案】(Ⅰ)1;(Ⅱ)两个.
【解析】
(Ⅰ),由,解得,检验时取得极小值即可;(II)令,由,得,讨论单调性得在时取得极小值,并证明极小值为.再由零点存在定理说明函数在和上各有一个零点,即可解得
(I)定义域为.
.
由已知,得,解得.
当时,.
所以.
所以减区间为,增区间为.
所以函数在时取得极小值,其极小值为,符合题意
所以.
(II)令,由,得.
所以.
所以减区间为,增区间为.
所以函数在时取得极小值,其极小值为.
因为,所以.
所以.所以.
因为,
又因为,所以.
所以.
根据零点存在定理,函数在上有且仅有一个零点.
因为,.
令,得.
又因为,所以.
所以当时,.
根据零点存在定理,函数在上有且仅有一个零点.
所以,当时,有两个零点.
科目:高中数学 来源: 题型:
【题目】如图1,在△中,,分别为,的中点,为的中点,,.将△沿折起到△的位置,使得平面平面,如图2.
(Ⅰ)求证:;
(Ⅱ)求直线和平面所成角的正弦值;
(Ⅲ)线段上是否存在点,使得直线和所成角的余弦值为?若存在,求出的值;若不存在,说明理由.
图1 图2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,为了保护环境,实现城市绿化,某房地产公司要在拆迁地长方形ABCD处规划一块长方形地面HPGC,建造住宅小区公园,但不能越过文物保护区三角形AEF的边线EF.已知AB=CD=200 m,BC=AD=160 m,AF=40 m,AE=60 m,问如何设计才能使公园占地面积最大,求出最大面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题正确的个数是( )
①命题已知或,,则是的充分不必要条件;
②“函数的最小正周期为”是“”的必要不充分条件;
③在上恒成立在上恒成立;
④“平面向量与的夹角是钝角”的充要条件是“”
⑤命题函数的值域为,命题函数是减函数.若或为真命题,且为假命题,则实数的取值范围是.
A.1B.2C.3D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=2sin2(x+)-2cos(x-)-5a+2.
(1)设t=sinx+cosx,将函数f(x)表示为关于t的函数g(t),求g(t)的解析式;
(2)对任意x∈[0,],不等式f(x)≥6-2a恒成立,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义域为R的函数f(x)=是奇函数.
(1)求a,b的值;
(2)若对任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥P-ABCD的底面是平行四边形,PD⊥AB,O是AD的中点,BO=CO.
(1)求证:AB⊥平面PAD;
(2)若AD=2AB=4, PA=PD,点M在侧棱PD上,且PD=3MD,二面角P-BC-D的大小为,求直线BP与平面MAC所成角的正弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com