分析 (Ⅰ)根据二次函数的性质求出函数的递增区间即可;
(Ⅱ)求出h(x)的解析式,根据函数的零点得到关于a的不等式组,解出即可;
(Ⅲ)设函数F(x)=f(x)-m,G(x)=g(2x)-5,分别求出F(x)的最小值和G(x)的最大值,求出a的范围即可.
解答 解:(Ⅰ)函数y=f(x)的单调递增区间为[-1,1],[3,+∞);
(不要求写出具体过程)…(3分)
(Ⅱ)∵-1<x<3,∴h(x)=f(x)-g(x)=|x2-2x-3|-x-a=-x2+x+3-a,
由题意知,$\left\{{\begin{array}{l}{△>0}\\{h(-1)<0}\\{h(3)<0}\end{array}}\right.$即$\left\{\begin{array}{l}a<\frac{13}{4}\\ a>1\\ a>-3\end{array}\right.$得$1<a<\frac{13}{4}$;…(7分)
(Ⅲ)设函数F(x)=f(x)-m,G(x)=g(2x)-5,
由题意,F(x)在[0,2]上的最小值不小于G(x)在[-2,-1]上的最大值,
F(x)=|x2-2x-3|-m=-x2+2x+3-m=-(x-1)2+4-m(0≤x≤2),
当x=0,或x=2时,F(x)min=3-m,G(x)=g(2x)-5=2x+a-5在区间[-2,-1]单调递增,
当x=-1时,$G{(x)_{max}}=G(-1)=a-\frac{9}{2}$,∴存在m∈[2,5],使得$3-m≥a-\frac{9}{2}$成立,
即$a≤{(\frac{15}{2}-m)_{max}}$,∴$a≤\frac{11}{2}$.∴a的最大值为$\frac{11}{2}$.…(12分)
点评 本题考查了函数的单调性、最值问题,考查导数的应用以及转化思想,是一道综合题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{{\sqrt{3}}}{2}$ | B. | $-\frac{1}{2}$ | C. | $\frac{{\sqrt{3}}}{2}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $[-\frac{2}{3},0]$ | B. | $[0,\frac{4}{3}]$ | C. | $[\frac{4}{3},2]$ | D. | [2,4] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com