·ÖÎö £¨¢ñ£©½«ÍÖÔ²C»¯ÎªÆÕͨ·½³ÌµÃ$\frac{x^2}{4}+{y^2}=1$£¬µ±$¦Á=\frac{¦Ð}{3}$ʱ£¬ÉèµãM¶ÔÓ¦µÄ²ÎÊýΪt0£¬Ö±Ïßl´úÈë·½³Ì$\frac{{x}^{2}}{4}$+y2=1£¬µÃ$13{t^2}+4\sqrt{3}t-4=0$£¬ÓÉ´ËÄÜÇó³öµãMµÄ×ø±ê£®
£¨¢ò£©$P£¨{\sqrt{3}£¬0}£©$£¬½«l£º$\left\{{\begin{array}{l}{x=\sqrt{3}+tcos¦Á}\\{y=tsin¦Á}\end{array}}\right.$´úÈë·½³Ì$\frac{x^2}{4}+{y^2}=1$£¬µÃ$£¨{{{cos}^2}¦Á+4{{sin}^2}¦Á}£©{t^2}+£¨{2\sqrt{3}cos¦Á}£©t-1=0$£¬ÓÉ´ËÀûÓÃÏÒ³¤¹«Ê½ÄÜÇó³öÖ±ÏßlµÄбÂÊ£®
½â´ð ½â£º£¨¢ñ£©½«ÍÖÔ²C£º$\left\{{\begin{array}{l}{x=2cos¦È}\\{y=sin¦È}\end{array}}\right.$»¯ÎªÆÕͨ·½³ÌµÃ$\frac{x^2}{4}+{y^2}=1$£¬
µ±$¦Á=\frac{¦Ð}{3}$ʱ£¬ÉèµãM¶ÔÓ¦µÄ²ÎÊýΪt0£¬
Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{{\begin{array}{l}{x=\sqrt{3}+\frac{1}{2}t}\\{y=\frac{{\sqrt{3}}}{2}t}\end{array}}\right.$£¨tΪ²ÎÊý£©£¬
´úÈë·½³Ì$\frac{{x}^{2}}{4}$+y2=1ÖУ¬²¢ÕûÀíµÃ$13{t^2}+4\sqrt{3}t-4=0$£¬
ÉèÖ±ÏßlÉϵĵãA£¬B¶ÔÓ¦µÄ²ÎÊý·Ö±ðΪt1£¬t2£¬${t_1}+{t_2}=-\frac{{4\sqrt{3}}}{13}$£¬
Ôò${t_0}=\frac{{{t_1}+{t_2}}}{2}=-\frac{{2\sqrt{3}}}{13}$£¬
¡àµãMµÄ×ø±êΪ$£¨{\frac{{12\sqrt{3}}}{13}£¬-\frac{3}{13}}£©$£®
£¨¢ò£©$P£¨{\sqrt{3}£¬0}£©$£¬½«l£º$\left\{{\begin{array}{l}{x=\sqrt{3}+tcos¦Á}\\{y=tsin¦Á}\end{array}}\right.$´úÈë·½³Ì$\frac{x^2}{4}+{y^2}=1$ÖУ¬
µÃ$£¨{{{cos}^2}¦Á+4{{sin}^2}¦Á}£©{t^2}+£¨{2\sqrt{3}cos¦Á}£©t-1=0$£¬
¡à${t_1}+{t_2}=-\frac{{2\sqrt{3}cos¦Á}}{{{{cos}^2}¦Á+4{{sin}^2}¦Á}}$£¬${t_1}{t_2}=-\frac{1}{{{{cos}^2}¦Á+4{{sin}^2}¦Á}}$£¬
¡à|AB|=|t1|+|t2|=|t1-t2|=$\sqrt{£¨{t}_{1}+{t}_{2}£©^{2}-4{t}_{1}{t}_{2}}$=$\sqrt{£¨-\frac{2\sqrt{3}cos¦Á}{co{s}^{2}¦Á+4si{n}^{2}¦Á}£©^{2}+\frac{4}{co{s}^{2}¦Á+4si{n}^{2}¦Á}}$
=$\frac{4}{{{{cos}^2}¦Á+4{{sin}^2}}}=\frac{4}{{1+3{{sin}^2}¦Á}}$£¬
ÓÉ$|{AB}|=\sqrt{3}|{OP}|$£¬µÃ$\frac{4}{{1+3{{sin}^2}¦Á}}=3$£¬
${sin^2}¦Á=\frac{1}{9}$£¬$sin¦Á=\frac{1}{3}$£¬$cos¦Á=¡À\frac{{2\sqrt{2}}}{3}$£¬
¡àÖ±ÏßlµÄбÂÊΪ$¡À\frac{{\sqrt{2}}}{4}$£®
µãÆÀ ±¾Ì⿼²éÏß¶ÎÖеã×ø±êµÄÇ󷨣¬¿¼²éÖ±ÏßµÄбÂʵÄÇ󷨣¬ÊÇÖеµÌ⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâÍÖÔ²¡¢²ÎÊý·½³Ì¡¢Ö±ÏßÐÔÖʵĺÏÀíÔËÓã®
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | ³ä·Ö²»±ØÒªÌõ¼þ | B£® | ±ØÒª²»³ä·ÖÌõ¼þ | ||
| C£® | ³äÒªÌõ¼þ | D£® | ¼È²»³ä·ÖÒ²²»±ØÒªÌõ¼þ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $£¨{1£¬\frac{{\sqrt{5}}}{2}}£©$ | B£® | $£¨{\sqrt{5}£¬+¡Þ}£©$ | C£® | $£¨{\frac{{\sqrt{5}}}{2}£¬\sqrt{5}}£©$ | D£® | $£¨{1£¬\frac{{\sqrt{5}}}{2}}£©¡È£¨{\sqrt{5}£¬+¡Þ}£©$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com