4£®ÔÚÖ±½Ç×ø±êϵxOyÖУ¬ÒÑÖªÖ±Ïßl£º$\left\{{\begin{array}{l}{x=\sqrt{3}+tcos¦Á}\\{y=tsin¦Á}\end{array}}\right.$£¨tΪ²ÎÊý£©ÓëÍÖÔ²C£º$\left\{\begin{array}{l}x=2cos¦È\\ y=sin¦È\end{array}\right.$£¨¦ÈΪ²ÎÊý£©ÏཻÓÚ²»Í¬µÄÁ½µãA£¬B£®
£¨¢ñ£©Èô$¦Á=\frac{¦Ð}{3}$£¬ÇóÏß¶ÎABÖеãMµÄ×ø±ê£»
£¨¢ò£©Èô$|{AB}|=\sqrt{3}|{OP}|$£¬ÆäÖÐΪÍÖÔ²µÄÓÒ½¹µãP£¬ÇóÖ±ÏßlµÄбÂÊ£®

·ÖÎö £¨¢ñ£©½«ÍÖÔ²C»¯ÎªÆÕͨ·½³ÌµÃ$\frac{x^2}{4}+{y^2}=1$£¬µ±$¦Á=\frac{¦Ð}{3}$ʱ£¬ÉèµãM¶ÔÓ¦µÄ²ÎÊýΪt0£¬Ö±Ïßl´úÈë·½³Ì$\frac{{x}^{2}}{4}$+y2=1£¬µÃ$13{t^2}+4\sqrt{3}t-4=0$£¬ÓÉ´ËÄÜÇó³öµãMµÄ×ø±ê£®
£¨¢ò£©$P£¨{\sqrt{3}£¬0}£©$£¬½«l£º$\left\{{\begin{array}{l}{x=\sqrt{3}+tcos¦Á}\\{y=tsin¦Á}\end{array}}\right.$´úÈë·½³Ì$\frac{x^2}{4}+{y^2}=1$£¬µÃ$£¨{{{cos}^2}¦Á+4{{sin}^2}¦Á}£©{t^2}+£¨{2\sqrt{3}cos¦Á}£©t-1=0$£¬ÓÉ´ËÀûÓÃÏÒ³¤¹«Ê½ÄÜÇó³öÖ±ÏßlµÄбÂÊ£®

½â´ð ½â£º£¨¢ñ£©½«ÍÖÔ²C£º$\left\{{\begin{array}{l}{x=2cos¦È}\\{y=sin¦È}\end{array}}\right.$»¯ÎªÆÕͨ·½³ÌµÃ$\frac{x^2}{4}+{y^2}=1$£¬
µ±$¦Á=\frac{¦Ð}{3}$ʱ£¬ÉèµãM¶ÔÓ¦µÄ²ÎÊýΪt0£¬
Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{{\begin{array}{l}{x=\sqrt{3}+\frac{1}{2}t}\\{y=\frac{{\sqrt{3}}}{2}t}\end{array}}\right.$£¨tΪ²ÎÊý£©£¬
´úÈë·½³Ì$\frac{{x}^{2}}{4}$+y2=1ÖУ¬²¢ÕûÀíµÃ$13{t^2}+4\sqrt{3}t-4=0$£¬
ÉèÖ±ÏßlÉϵĵãA£¬B¶ÔÓ¦µÄ²ÎÊý·Ö±ðΪt1£¬t2£¬${t_1}+{t_2}=-\frac{{4\sqrt{3}}}{13}$£¬
Ôò${t_0}=\frac{{{t_1}+{t_2}}}{2}=-\frac{{2\sqrt{3}}}{13}$£¬
¡àµãMµÄ×ø±êΪ$£¨{\frac{{12\sqrt{3}}}{13}£¬-\frac{3}{13}}£©$£®
£¨¢ò£©$P£¨{\sqrt{3}£¬0}£©$£¬½«l£º$\left\{{\begin{array}{l}{x=\sqrt{3}+tcos¦Á}\\{y=tsin¦Á}\end{array}}\right.$´úÈë·½³Ì$\frac{x^2}{4}+{y^2}=1$ÖУ¬
µÃ$£¨{{{cos}^2}¦Á+4{{sin}^2}¦Á}£©{t^2}+£¨{2\sqrt{3}cos¦Á}£©t-1=0$£¬
¡à${t_1}+{t_2}=-\frac{{2\sqrt{3}cos¦Á}}{{{{cos}^2}¦Á+4{{sin}^2}¦Á}}$£¬${t_1}{t_2}=-\frac{1}{{{{cos}^2}¦Á+4{{sin}^2}¦Á}}$£¬
¡à|AB|=|t1|+|t2|=|t1-t2|=$\sqrt{£¨{t}_{1}+{t}_{2}£©^{2}-4{t}_{1}{t}_{2}}$=$\sqrt{£¨-\frac{2\sqrt{3}cos¦Á}{co{s}^{2}¦Á+4si{n}^{2}¦Á}£©^{2}+\frac{4}{co{s}^{2}¦Á+4si{n}^{2}¦Á}}$
=$\frac{4}{{{{cos}^2}¦Á+4{{sin}^2}}}=\frac{4}{{1+3{{sin}^2}¦Á}}$£¬
ÓÉ$|{AB}|=\sqrt{3}|{OP}|$£¬µÃ$\frac{4}{{1+3{{sin}^2}¦Á}}=3$£¬
${sin^2}¦Á=\frac{1}{9}$£¬$sin¦Á=\frac{1}{3}$£¬$cos¦Á=¡À\frac{{2\sqrt{2}}}{3}$£¬
¡àÖ±ÏßlµÄбÂÊΪ$¡À\frac{{\sqrt{2}}}{4}$£®

µãÆÀ ±¾Ì⿼²éÏß¶ÎÖеã×ø±êµÄÇ󷨣¬¿¼²éÖ±ÏßµÄбÂʵÄÇ󷨣¬ÊÇÖеµÌ⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâÍÖÔ²¡¢²ÎÊý·½³Ì¡¢Ö±ÏßÐÔÖʵĺÏÀíÔËÓã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®¡°a£¾0£¬b£¾0¡±ÊÇ¡°$ab£¼{£¨{\frac{a+b}{2}}£©^2}$¡±µÄ£¨¡¡¡¡£©
A£®³ä·Ö²»±ØÒªÌõ¼þB£®±ØÒª²»³ä·ÖÌõ¼þ
C£®³äÒªÌõ¼þD£®¼È²»³ä·ÖÒ²²»±ØÒªÌõ¼þ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÒÑÖªº¯Êýf£¨x£©=|x2-2x-3|£¬g£¨x£©=x+a£®
£¨¢ñ£©Çóº¯Êýy=f£¨x£©µÄµ¥µ÷µÝÔöÇø¼ä£»£¨Ö»Ðèд³ö½áÂÛ¼´¿É£©
£¨¢ò£©É躯Êýh£¨x£©=f£¨x£©-g£¨x£©£¬Èôh£¨x£©ÔÚÇø¼ä£¨-1£¬3£©ÉÏÓÐÁ½¸ö²»Í¬µÄÁãµã£¬ÇóʵÊýaµÄȡֵ·¶Î§£»
£¨¢ó£©Èô´æÔÚʵÊým¡Ê[2£¬5]£¬Ê¹µÃ¶ÔÓÚÈÎÒâµÄx1¡Ê[0£¬2]£¬x2¡Ê[-2£¬-1]£¬¶¼ÓÐf£¨x1£©-m¡Ýg£¨2${\;}^{{x}_{2}}$£©-5³ÉÁ¢£¬ÇóʵÊýaµÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®¹ýË«ÇúÏß$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1£¨{a£¾0£¬b£¾0}£©$µÄ×ó½¹µãF×÷Ö±ÏßlÓëË«ÇúÏß½»ÓÚA£¬BÁ½µã£¬Ê¹µÃ|AB|=4b£¬ÈôÕâÑùµÄÖ±ÏßÓÐÇÒ½öÓÐÁ½Ìõ£¬ÔòÀëÐÄÂÊeµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®$£¨{1£¬\frac{{\sqrt{5}}}{2}}£©$B£®$£¨{\sqrt{5}£¬+¡Þ}£©$C£®$£¨{\frac{{\sqrt{5}}}{2}£¬\sqrt{5}}£©$D£®$£¨{1£¬\frac{{\sqrt{5}}}{2}}£©¡È£¨{\sqrt{5}£¬+¡Þ}£©$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®Èçͼ£¬±ß³¤Îª2µÄÕý·½ÐÎABCDÖУ¬µãEÊÇABµÄÖе㣬µãFÊÇBCµÄÖе㣮½«¡÷AED¡¢¡÷DCF·Ö±ðÑØDE¡¢DFÕÛÆð£¬Ê¹A¡¢CÁ½µãÖØºÏÓÚµãA'£¬Á¬½áEF£¬A'B£®
£¨1£©ÇóÒìÃæÖ±ÏßA'DÓëEFËù³É½ÇµÄ´óС£»
£¨2£©ÇóÈýÀâ×¶D-A'EFµÄÌå»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®Èçͼ£¬ËıßÐÎABCDΪÌÝÐΣ¬AB¡ÎCD£¬PD¡ÍÆ½ÃæABCD£¬¡ÏBAD=¡ÏADC=90¡ã£¬$DC=2AB=2£¬DA=\sqrt{3}$£®
£¨1£©Ïß¶ÎBCÉÏÊÇ·ñ´æÔÚÒ»µãE£¬Ê¹Æ½ÃæPBC¡ÍÆ½ÃæPDE£¿Èô´æÔÚ£¬Çë¸ø³ö$\frac{BE}{CE}$µÄÖµ£¬²¢½øÐÐÖ¤Ã÷£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
£¨2£©Èô$PD=\sqrt{3}$£¬Ïß¶ÎPCÉÏÓÐÒ»µãF£¬ÇÒPC=3PF£¬ÇóÖ±ÏßAFÓëÆ½ÃæPBCËù³É½ÇµÄÕýÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®ÒÑÖªÊýÁÐ{an}µÄÊ×Ïîa1=m£¬ÆäǰnÏîºÍΪSn£¬ÇÒÂú×ãSn+Sn+1=3n2+2n£¬Èô¶Ô?n¡ÊN+£¬an£¼an+1ºã³ÉÁ¢£¬ÔòmµÄȡֵ·¶Î§ÊÇ£¨-2£¬$\frac{5}{3}$£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®Èçͼ£¬Ô²£¨x+2£©2+y2=4µÄÔ²ÐÄΪµãB£¬A£¨2£¬0£©£¬PÊÇÔ²ÉÏÈÎÒâÒ»µã£¬Ïß¶ÎAPµÄ´¹Ö±Æ½·ÖÏßlºÍÖ±ÏßBPÏཻÓÚµãQ£¬µ±µãPÔÚÔ²ÉÏÔ˶¯Ê±£¬µãQµÄ¹ì¼£·½³ÌΪ${x^2}-\frac{y^2}{3}=1$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®·½³Ì2sin¦Ðx-lgx2=0ʵÊý½âµÄ¸öÊýÊÇ20£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸