精英家教网 > 高中数学 > 题目详情
9.如图,四边形ABCD为梯形,AB∥CD,PD⊥平面ABCD,∠BAD=∠ADC=90°,$DC=2AB=2,DA=\sqrt{3}$.
(1)线段BC上是否存在一点E,使平面PBC⊥平面PDE?若存在,请给出$\frac{BE}{CE}$的值,并进行证明;若不存在,请说明理由.
(2)若$PD=\sqrt{3}$,线段PC上有一点F,且PC=3PF,求直线AF与平面PBC所成角的正弦值.

分析 (1)连结DE,PE,BD,便可得到BD=DC,而E又是BC中点,从而得到BC⊥DE,而由PD⊥平面ABCD便可得到BC⊥PD,从而得出BC⊥平面PDE,根据面面垂直的判定定理即可得出平面PBC⊥平面PDE;
(2)建立如图所示的坐标系,求出平面PBC的法向量,即可求直线AF与平面PBC所成角的正弦值.

解答 解:(1)$\frac{BE}{CE}$=1时,平面PBC⊥平面PDE.
证明:连结DE,PE,BD,∠BAD=90°,AB=1,DA=$\sqrt{3}$,
∴BD=DC=2a,E为BC中点,∴BC⊥DE;
又PD⊥平面ABCD,BC?平面ABCD;
∴BC⊥PD,DE∩PD=D;
∴BC⊥平面PDE;
∵BC?平面PBC;
∴平面PBC⊥平面PDE;
(2)建立如图所示的坐标系,则D(0,0,0),P(0,0,$\sqrt{3}$),A($\sqrt{3}$,0,0),B($\sqrt{3}$,1,0),C(0,2,0),
∵PC=3PF,∴F(0,$\frac{2}{3}$,$\frac{2\sqrt{3}}{3}$),
∴$\overrightarrow{AF}$=(-$\sqrt{3}$,$\frac{2}{3}$,$\frac{2\sqrt{3}}{3}$),
设平面PBC的法向量为$\overrightarrow{n}$=(x,y,z),
∵$\overrightarrow{BC}$=(-$\sqrt{3}$,1,0),$\overrightarrow{PC}$=(0,2,-$\sqrt{3}$),
∴$\left\{\begin{array}{l}{-\sqrt{3}x+y=0}\\{2y-\sqrt{3}z=0}\end{array}\right.$,取$\overrightarrow{n}$=(1,$\sqrt{3}$,2).
∴直线AF与平面PBC所成角的正弦值=|$\frac{-\sqrt{3}+\frac{2\sqrt{3}}{3}+\frac{4\sqrt{3}}{3}}{\sqrt{8}×\sqrt{\frac{43}{9}}}$|=$\frac{3\sqrt{258}}{172}$.

点评 本题考查线面垂直的性质,线面垂直的判定定理,考查线面角,考查向量知识的运用,属于中档题..

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.已知圆的圆心在曲线y2=x上,且与直线x+2y+6=0相切,当圆的面积最小时,其标准方程为(x-1)2+(y+1)2=5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=4sin(x-$\frac{π}{3}$)cosx+$\sqrt{3}$.
(Ⅰ)求函数f(x)的最小正周期和单调递增区间;
(Ⅱ)若函数g(x)=f(x)-m所在[0,$\frac{π}{2}$]匀上有两个不同的零点x1,x2,求实数m的取值范围,并计算tan(x1+x2)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知等差数列{an}中,a1=3,a2+a5=11.
(Ⅰ)求数列{an}的通项公式an
(Ⅱ)若cn=2${\;}^{{a}_{n}-2}$+n,求数列{cn}的前10项和S10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在直角坐标系xOy中,已知直线l:$\left\{{\begin{array}{l}{x=\sqrt{3}+tcosα}\\{y=tsinα}\end{array}}\right.$(t为参数)与椭圆C:$\left\{\begin{array}{l}x=2cosθ\\ y=sinθ\end{array}\right.$(θ为参数)相交于不同的两点A,B.
(Ⅰ)若$α=\frac{π}{3}$,求线段AB中点M的坐标;
(Ⅱ)若$|{AB}|=\sqrt{3}|{OP}|$,其中为椭圆的右焦点P,求直线l的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如图,网格纸上的小正方形边长为1,粗线或虚线表示一个棱柱的三视图,则此棱柱的侧面积为(  )
A.16+4$\sqrt{5}$B.20+4$\sqrt{5}$C.16+8$\sqrt{5}$D.8+12$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左焦点F1与抛物线y2=-4x的焦点重合,椭圆E的离心率为$\frac{\sqrt{2}}{2}$,过点M(m,0)(m>$\frac{3}{4}$)做斜率存在且不为0的直线l,交椭圆E于A,C两点,点P($\frac{5}{4}$,0),且$\overrightarrow{PA}$•$\overrightarrow{PC}$为定值.
(1)求椭圆E的方程;
(2)过点M且垂直于l的直线与椭圆E交于B,D两点,求四边形ABCD面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在直角坐标xOy平面内,已知点F(2,0),直线l:x=-2,P为平面上的动点,过P作直线l的垂线,垂足为点Q,且$\overrightarrow{OP}•\overrightarrow{OF}=\overrightarrow{FP}•\overrightarrow{FQ}$.
(1)求动点P的轨迹C的方程;
(2)过点F的直线交轨迹C于A,B两点,交直线l于点M,已知$\overrightarrow{MA}=λ\overrightarrow{AF},\overrightarrow{MB}=μ\overrightarrow{BF}$,试判断λ+μ是否为定值?若是,求出该定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某养殖场原有一块直角梯形的水域ABCD,其中BC,AD与边AB垂直,AD=800m,AB=2BC=600m.为满足钓鱼爱好者需要,计划修建两道互相垂直的水上栈道MF与ME,点M,E,F都在岸边上,其中M为AB的中点,点E在岸边BC上,设∠EMB=θrad,水上栈道MF与ME的长度和记为f(θ)(单位:m).
(1)写出f(θ)关于θ的函数关系式,并指出tanθ的范围;
(2)求f(θ)的最小值,并求出此时θ的值.

查看答案和解析>>

同步练习册答案