分析 (1)连结DE,PE,BD,便可得到BD=DC,而E又是BC中点,从而得到BC⊥DE,而由PD⊥平面ABCD便可得到BC⊥PD,从而得出BC⊥平面PDE,根据面面垂直的判定定理即可得出平面PBC⊥平面PDE;
(2)建立如图所示的坐标系,求出平面PBC的法向量,即可求直线AF与平面PBC所成角的正弦值.
解答 解:
(1)$\frac{BE}{CE}$=1时,平面PBC⊥平面PDE.
证明:连结DE,PE,BD,∠BAD=90°,AB=1,DA=$\sqrt{3}$,
∴BD=DC=2a,E为BC中点,∴BC⊥DE;
又PD⊥平面ABCD,BC?平面ABCD;
∴BC⊥PD,DE∩PD=D;
∴BC⊥平面PDE;
∵BC?平面PBC;
∴平面PBC⊥平面PDE;
(2)建立如图所示的坐标系,则D(0,0,0),P(0,0,$\sqrt{3}$),A($\sqrt{3}$,0,0),B($\sqrt{3}$,1,0),C(0,2,0),
∵PC=3PF,∴F(0,$\frac{2}{3}$,$\frac{2\sqrt{3}}{3}$),
∴$\overrightarrow{AF}$=(-$\sqrt{3}$,$\frac{2}{3}$,$\frac{2\sqrt{3}}{3}$),
设平面PBC的法向量为$\overrightarrow{n}$=(x,y,z),
∵$\overrightarrow{BC}$=(-$\sqrt{3}$,1,0),$\overrightarrow{PC}$=(0,2,-$\sqrt{3}$),
∴$\left\{\begin{array}{l}{-\sqrt{3}x+y=0}\\{2y-\sqrt{3}z=0}\end{array}\right.$,取$\overrightarrow{n}$=(1,$\sqrt{3}$,2).
∴直线AF与平面PBC所成角的正弦值=|$\frac{-\sqrt{3}+\frac{2\sqrt{3}}{3}+\frac{4\sqrt{3}}{3}}{\sqrt{8}×\sqrt{\frac{43}{9}}}$|=$\frac{3\sqrt{258}}{172}$.
点评 本题考查线面垂直的性质,线面垂直的判定定理,考查线面角,考查向量知识的运用,属于中档题..
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 16+4$\sqrt{5}$ | B. | 20+4$\sqrt{5}$ | C. | 16+8$\sqrt{5}$ | D. | 8+12$\sqrt{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com