7£®ÒÑ֪˫ÇúÏß$¦££º{x^2}-\frac{y^2}{b^2}=1$£¨b£¾0£©£¬Ö±Ïßl£ºy=kx+m£¨km¡Ù0£©£¬lÓ릣½»ÓÚP¡¢QÁ½µã£¬P'ΪP¹ØÓÚyÖáµÄ¶Ô³Æµã£¬Ö±ÏßP'QÓëyÖá½»ÓÚµãN£¨0£¬n£©£»
£¨1£©Èôµã£¨2£¬0£©ÊǦ£µÄÒ»¸ö½¹µã£¬Ç󦣵Ľ¥½üÏß·½³Ì£»
£¨2£©Èôb=1£¬µãPµÄ×ø±êΪ£¨-1£¬0£©£¬ÇÒ$\overrightarrow{NP'}=\frac{3}{2}\overrightarrow{P'Q}$£¬ÇókµÄÖµ£»
£¨3£©Èôm=2£¬Çón¹ØÓÚbµÄ±í´ïʽ£®

·ÖÎö £¨1£©ÓÉË«ÇúÏß$¦££º{x^2}-\frac{y^2}{b^2}=1$£¨b£¾0£©£¬µã£¨2£¬0£©ÊǦ£µÄÒ»¸ö½¹µã£¬Çó³öc=2£¬a=1£¬ÓÉ´ËÄÜÇó³ö¦£µÄ±ê×¼·½³Ì£¬´Ó¶øÄÜÇó³ö¦£µÄ½¥½üÏß·½³Ì£®
£¨2£©Ë«ÇúÏߦ£Îª£ºx2-y2=1£¬Óɶ¨±È·Öµã×ø±ê¹«Ê½£¬½áºÏÒÑÖªÌõ¼þÄÜÇó³ökµÄÖµ£®
£¨3£©ÉèP£¨x1£¬y1£©£¬Q£¨x2£¬y2£©£¬kPQ=k0£¬Ôò${P}^{'}£¨-{{x}_{1}£¬{y}_{1}£©£¬{l}_{PQ}={k}_{0}x+n}^{\;}$£¬ÓÉ$\left\{\begin{array}{l}{y=kx+2}\\{{x}^{2}-\frac{{y}^{2}}{{b}^{2}}=1}\end{array}\right.$£¬µÃ£¨b2-k2£©x2-4kx-4-b2=0£¬ÓÉ$\left\{\begin{array}{l}{y={k}_{0}x+n}\\{{x}^{2}-\frac{{y}^{2}}{{b}^{2}}=1}\end{array}\right.$£¬µÃ£¨${b}^{2}-{{k}_{0}}^{2}$£©x2-2k0nx-n2-b2=0£¬ÓÉ´ËÀûÓÃΤ´ï¶¨Àí£¬½áºÏÒÑÖªÌõ¼þÄÜÇó³ön¹ØÓÚbµÄ±í´ïʽ£®

½â´ð ½â£º£¨1£©¡ßË«ÇúÏß$¦££º{x^2}-\frac{y^2}{b^2}=1$£¨b£¾0£©£¬µã£¨2£¬0£©ÊǦ£µÄÒ»¸ö½¹µã£¬
¡àc=2£¬a=1£¬¡àb2=c2-a2=4-1=3£¬
¡à¦£µÄ±ê×¼·½³ÌΪ£º${x}^{2}-\frac{{y}^{2}}{3}$=1£¬
¦£µÄ½¥½üÏß·½³ÌΪ$y=¡À\sqrt{3}x$£®
£¨2£©¡ßb=1£¬¡àË«ÇúÏߦ£Îª£ºx2-y2=1£¬P£¨-1£¬0£©£¬P¡ä£¨1£¬0£©£¬
¡ß$\overrightarrow{N{P}^{'}}$=$\frac{3}{2}$$\overrightarrow{{P}^{'}Q}$£¬ÉèQ£¨x2£¬y2£©£¬
ÔòÓж¨±È·Öµã×ø±ê¹«Ê½£¬µÃ£º
$\left\{\begin{array}{l}{1=\frac{0+\frac{3}{2}{x}_{2}}{1+\frac{3}{2}}}\\{0=\frac{n+\frac{3}{2}{y}_{2}}{1+\frac{3}{2}}}\end{array}\right.$£¬½âµÃ${x}_{2}=\frac{5}{3}$£¬¡ß${{x}_{2}}^{2}-{{y}_{2}}^{2}=1$£¬¡à${y}_{2}=¡À\frac{4}{3}$£¬
¡à$k=\frac{{y}_{2}-0}{{x}_{2}+1}$=$¡À\frac{1}{2}$£®
£¨3£©ÉèP£¨x1£¬y1£©£¬Q£¨x2£¬y2£©£¬kPQ=k0£¬
Ôò${P}^{'}£¨-{{x}_{1}£¬{y}_{1}£©£¬{l}_{PQ}={k}_{0}x+n}^{\;}$£¬
ÓÉ$\left\{\begin{array}{l}{y=kx+2}\\{{x}^{2}-\frac{{y}^{2}}{{b}^{2}}=1}\end{array}\right.$£¬µÃ£¨b2-k2£©x2-4kx-4-b2=0£¬
${x}_{1}+{x}_{2}=\frac{4k}{{b}^{2}-{k}^{2}}$£¬${x}_{1}{x}_{2}=\frac{-4-{b}^{2}}{{b}^{2}-{k}^{2}}$£¬
ÓÉ$\left\{\begin{array}{l}{y={k}_{0}x+n}\\{{x}^{2}-\frac{{y}^{2}}{{b}^{2}}=1}\end{array}\right.$£¬µÃ£¨${b}^{2}-{{k}_{0}}^{2}$£©x2-2k0nx-n2-b2=0£¬
-x1+x2=$\frac{2{k}_{0}n}{{b}^{2}-{{k}_{0}}^{2}}$£¬-x1x2=$\frac{-{n}^{2}-{b}^{2}}{{b}^{2}-{{k}_{0}}^{2}}$£¬
¡àx1x2=$\frac{-4-{b}^{2}}{{b}^{2}-{k}^{2}}$=$\frac{{n}^{2}+{b}^{2}}{{b}^{2}-{{k}_{0}}^{2}}$£¬¼´$\frac{{b}^{2}-{{k}_{0}}^{2}}{{b}^{2}-{k}^{2}}$£¬¼´$\frac{{b}^{2}-{{k}_{0}}^{2}}{{b}^{2}-{k}^{2}}$=$\frac{{n}^{2}+{b}^{2}}{-4-{b}^{2}}$£¬
$\frac{k}{{k}_{0}}$=$\frac{\frac{{y}_{2}-{y}_{1}}{{x}_{2}-{x}_{1}}}{\frac{{y}_{2}-{y}_{1}}{{x}_{2}+{x}_{1}}}$=$\frac{{x}_{1}+{x}_{2}}{{x}_{2}-{x}_{1}}$=$\frac{2k}{{k}_{0}n}•\frac{{b}^{2}-{{k}_{0}}^{2}}{{b}^{2}-{k}^{2}}$=$\frac{2k}{{k}_{0}n}•\frac{{n}^{2}+{b}^{2}}{-4-{b}^{2}}$£¬
»¯¼ò£¬µÃ2n2+n£¨4+b2£©+2b2=0£¬
¡àn=-2»òn=$\frac{{b}^{2}}{-2}$£¬
µ±n=-2£¬ÓÉ$\frac{{b}^{2}-{{k}_{0}}^{2}}{{b}^{2}-{k}^{2}}$=$\frac{{n}^{2}+{b}^{2}}{-4-{b}^{2}}$£¬µÃ2b2=k2+k02£¬
ÓÉ$\left\{\begin{array}{l}{y={k}_{0}x-2}\\{y=kx+2}\end{array}\right.$£¬µÃ$\left\{\begin{array}{l}{x=\frac{4}{{k}_{0}-k}}\\{y=\frac{2k+2{k}_{0}}{{k}_{0}-k}}\end{array}\right.$£¬
¼´Q£¨$\frac{4}{{k}_{0}-k}$£¬$\frac{2k+2{k}_{0}}{{k}_{0}-k}$£©£¬´úÈëx2-$\frac{{y}^{2}}{{b}^{2}}$=1£¬»¯¼ò£¬µÃ£º
${b}^{2}-£¨4+k{k}_{0}£©{b}^{2}+4k{k}_{0}=0$£¬½âµÃb2=4»òb2=kk0£¬
µ±b2=4ʱ£¬Âú×ãn=$\frac{{b}^{2}}{-2}$£¬
µ±b2=kk0ʱ£¬ÓÉ2b2=k2+k02£¬µÃk=k0£¨ÉáÈ¥£©£¬
×ÛÉÏ£¬µÃn=$\frac{{b}^{2}}{-2}$£®

µãÆÀ ±¾Ì⿼²éË«ÇúÏߵĽ¥½üÏßµÄÇ󷨣¬¿¼²éÖ±ÏßµÄбÂʵÄÇ󷨣¬¿¼²én¹ØÓÚbµÄ±í´ïʽµÄÇ󷨣¬ÊÇÖеµÌ⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâË«ÇúÏß¡¢Ö±Ïß¡¢Î¤´ï¶¨ÀíµÄºÏÀíÔËÓã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®Èçͼ£¬ABCDÊDZ߳¤2µÄÁâÐΣ¬ÆäÖСÏDAB=60¡ã£¬ED´¹Ö±Æ½ÃæABCD£¬ED=1£¬EF¡ÎBDÇÒ2EF=BD£®
£¨1£©ÇóÖ¤£ºÆ½ÃæEAC¡Í´¹Ö±Æ½ÃæBDEF£»
£¨2£©Ç󼸺ÎÌåABCDEFµÄÌå»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÎªÁ˱£»¤»·¾³·¢Õ¹µÍ̼¾­¼Ã£¬Ä³µ¥Î»ÔÚ¹ú¼Ò¿ÆÑв¿ÃŵÄÖ§³ÖÏ£¬½øÐм¼Êõ¹¥¹Ø£¬ÐÂÉÏÁ˰ѶþÑõ»¯Ì¼´¦Àíת»¯ÎªÒ»ÖÖ¿ÉÀûÓõϝ¹¤²úÆ·µÄÏîÄ¿£¬¾­²âË㣬¸ÃÏîĿԴ¦Àí³É±¾y£¨Ôª£©ÓëÔ´¦ÀíÁ¿x£¨¶Ö£©Ö®¼äµÄº¯Êý¹ØÏµ¿É½üËÆµØ±íʾΪf£¨x£©=$\left\{\begin{array}{l}{\frac{1}{3}{x}^{3}-80{x}^{2}+5140x£¬x¡Ê[120£¬144]}\\{\frac{1}{2}{x}^{2}-100x+80000£¬x¡Ê[144£¬400]}\end{array}\right.$ÇÒÿ´¦ÀíÒ»¶Ö¶þÑõ»¯Ì¼µÃµ½¿ÉÀûÓõϝ¹¤²úÆ·¼ÛֵΪ300Ôª£¬Èô¸ÃÏîÄ¿²»»ñÀû£¬¹ú¼Ò½«¸øÓè²¹³¥£®
£¨¢ñ£©µ±x¡Ê[150£¬300]ʱ£¬ÅжϸÃÏîÄ¿ÄÜ·ñ»ñÀû£¿Èç¹û»ñÀû£¬Çó³ö×î´óÀûÈó£»Èç¹û²»»ñÀû£¬Ôò¹ú¼ÒÿÔÂÖÁÉÙÐèÒª²¹Ìù¶àÉÙÔª²ÅÄÜʹ¸ÃÏîÄ¿²»¿÷Ëð£¿
£¨¢ò£©¸ÃÏîĿÿÔ´¦ÀíÁ¿Îª¶àÉÙ¶Öʱ£¿²ÅÄÜʹÿ¶ÖµÄƽ¾ù´¦Àí³É±¾×îµÍ£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÒÑÖªº¯Êýf£¨x£©=|x2-2x-3|£¬g£¨x£©=x+a£®
£¨¢ñ£©Çóº¯Êýy=f£¨x£©µÄµ¥µ÷µÝÔöÇø¼ä£»£¨Ö»Ðèд³ö½áÂÛ¼´¿É£©
£¨¢ò£©É躯Êýh£¨x£©=f£¨x£©-g£¨x£©£¬Èôh£¨x£©ÔÚÇø¼ä£¨-1£¬3£©ÉÏÓÐÁ½¸ö²»Í¬µÄÁãµã£¬ÇóʵÊýaµÄȡֵ·¶Î§£»
£¨¢ó£©Èô´æÔÚʵÊým¡Ê[2£¬5]£¬Ê¹µÃ¶ÔÓÚÈÎÒâµÄx1¡Ê[0£¬2]£¬x2¡Ê[-2£¬-1]£¬¶¼ÓÐf£¨x1£©-m¡Ýg£¨2${\;}^{{x}_{2}}$£©-5³ÉÁ¢£¬ÇóʵÊýaµÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®ÒÑÖªÒ»¼¸ºÎÌåµÄÈýÊÓͼÈçͼËùʾ£¬¸©ÊÓͼÓÉÒ»¸öÖ±½ÇÈý½ÇÐÎÓëÒ»¸ö°ëÔ²×é³É£¬Ôò¸Ã¼¸ºÎÌåµÄÌå»ýΪ£¨¡¡¡¡£©
A£®4¦Ð+8B£®4¦Ð+12C£®8¦Ð+8D£®8¦Ð+12

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®¹ýË«ÇúÏß$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1£¨{a£¾0£¬b£¾0}£©$µÄ×ó½¹µãF×÷Ö±ÏßlÓëË«ÇúÏß½»ÓÚA£¬BÁ½µã£¬Ê¹µÃ|AB|=4b£¬ÈôÕâÑùµÄÖ±ÏßÓÐÇÒ½öÓÐÁ½Ìõ£¬ÔòÀëÐÄÂÊeµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®$£¨{1£¬\frac{{\sqrt{5}}}{2}}£©$B£®$£¨{\sqrt{5}£¬+¡Þ}£©$C£®$£¨{\frac{{\sqrt{5}}}{2}£¬\sqrt{5}}£©$D£®$£¨{1£¬\frac{{\sqrt{5}}}{2}}£©¡È£¨{\sqrt{5}£¬+¡Þ}£©$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®Èçͼ£¬±ß³¤Îª2µÄÕý·½ÐÎABCDÖУ¬µãEÊÇABµÄÖе㣬µãFÊÇBCµÄÖе㣮½«¡÷AED¡¢¡÷DCF·Ö±ðÑØDE¡¢DFÕÛÆð£¬Ê¹A¡¢CÁ½µãÖØºÏÓÚµãA'£¬Á¬½áEF£¬A'B£®
£¨1£©ÇóÒìÃæÖ±ÏßA'DÓëEFËù³É½ÇµÄ´óС£»
£¨2£©ÇóÈýÀâ×¶D-A'EFµÄÌå»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®ÒÑÖªÊýÁÐ{an}µÄÊ×Ïîa1=m£¬ÆäǰnÏîºÍΪSn£¬ÇÒÂú×ãSn+Sn+1=3n2+2n£¬Èô¶Ô?n¡ÊN+£¬an£¼an+1ºã³ÉÁ¢£¬ÔòmµÄȡֵ·¶Î§ÊÇ£¨-2£¬$\frac{5}{3}$£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÎªÁËÕû¶ÙʳƷµÄ°²È«ÎÀÉú£¬Ê³Æ·¼à¶½²¿ÃŶÔijʳƷ³§Éú²ú¼×¡¢ÒÒÁ½ÖÖʳƷ½øÐÐÁ˼ì²âµ÷ÑУ¬¼ì²âijÖÖÓк¦Î¢Á¿ÔªËصĺ¬Á¿£¬Ëæ»úÔÚÁ½ÖÖʳƷÖи÷³éÈ¡ÁË10¸öÅú´ÎµÄʳƷ£¬Ã¿¸öÅú´Î¸÷Ëæ»úµØ³éÈ¡ÁËÒ»¼þ£¬Ï±íÊDzâÁ¿Êý¾ÝµÄ¾¥Ò¶Í¼£¨µ¥Î»£ººÁ¿Ë£©£®

¹æ¶¨£ºµ±Ê³Æ·ÖеÄÓк¦Î¢Á¿ÔªËصĺ¬Á¿ÔÚ[0£¬10]ʱΪһµÈÆ·£¬ÔÚ[10£¬20]Ϊ¶þµÈÆ·£¬20ÒÔÉÏΪÁÓÖÊÆ·£®
£¨1£©Ó÷ֲã³éÑùµÄ·½·¨ÔÚÁ½×éÊý¾ÝÖи÷³éÈ¡5¸öÊý¾Ý£¬ÔÙ·Ö±ð´ÓÕâ5¸öÊý¾ÝÖи÷ѡȡ2¸ö£¬Çó¼×µÄÒ»µÈÆ·ÊýÓëÒÒµÄÒ»µÈÆ·ÊýÏàµÈµÄ¸ÅÂÊ£»
£¨2£©Ã¿Éú²úÒ»¼þÒ»µÈÆ·Ó¯Àû50Ôª£¬¶þµÈÆ·Ó¯Àû20Ôª£¬ÁÓÖÊÆ·¿÷Ëð20Ôª£¬¸ù¾ÝÉϱíͳ¼ÆµÃµ½¼×¡¢ÒÒÁ½ÖÖʳƷΪһµÈÆ·¡¢¶þµÈÆ·¡¢ÁÓÖÊÆ·µÄƵÂÊ£¬·Ö±ð¹À¼ÆÕâÁ½ÖÖʳƷΪһµÈÆ·¡¢¶þµÈÆ·¡¢ÁÓÖÊÆ·µÄ¸ÅÂÊ£¬Èô·Ö±ð´Ó¼×¡¢ÒÒʳƷÖи÷³éÈ¡1¼þ£¬ÉèÕâÁ½¼þʳƷ¸ø¸Ã³§´øÀ´µÄÓ¯ÀûΪX£¬ÇóËæ»ú±äÁ¿XµÄ·Ö²¼ÁкÍÊýѧÆÚÍû£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸