精英家教网 > 高中数学 > 题目详情
5.设函数f(x)=lnx+ln(2-x)+ax(a>0).
(1)当a=1时,求f(x)的单调区间;
(2)若f(x)在(0,1]上的最大值为$\frac{2}{3}$,求a的值.

分析 (1)已知a=1,求出函数的导数,求解f(x)的单调区间,只需令f′(x)>0解出单调增区间,令f′(x)<0解出单调减区间.
(2)区间(0,1]上的最值问题,通过导数得到单调性,结合极值点和端点的比较得到,确定待定量a的值.

解答 解:(1)当a=1时,f′(x)=$\frac{2-{x}^{2}}{x(2-x)}$,
∴当x∈(0,$\sqrt{2}$)时,f′(x)>0,
当x∈($\sqrt{2}$,2)时,f′(x)<0,
所以f(x)的单调递增区间为(0,$\sqrt{2}$),
单调递减区间为($\sqrt{2}$,2);…(5分)  
(2)当x∈(0,1]时,f′(x)=$\frac{2-2x}{x(2-x)}$+a>0,
即f(x)在(0,1]上单调递增,
故f(x)在 (0,1]上的最大值为f(1)=a,
因此a=$\frac{2}{3}$.…(10分)

点评 本题考查了考查利用导数研究函数的单调性,利用导数处理函数最值等知识,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左焦点为F,离心率为$\frac{1}{2}$,直线l与椭圆相交于A,B两点,当AB⊥x轴时,△ABF的周长最大值为8.
(1)求椭圆的方程;
(2)若直线l过点M(-4,0),求当△ABF面积最大时直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,在三棱柱ABC-A1B1C1中,四边形A1ABB1为菱形,∠A1AB=45°,四边形BCC1B1为矩形,若AC=5,AB=4,BC=3.
(1)求证:BC∥平面A1B1C1
(2)求证:AB1⊥平面A1BC;
(3)求三棱锥C-A1B1C1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.某校从参加高二年级期末考试的学生中抽出60名学生,将其数学成绩(均为整数)分成六段后画出如下频率分布直方图.观察图形的信息,回答下列问题:这次考试的中位数为73.3 (结果保留一位小数).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)过点(0,$\sqrt{3}$),离心率为$\frac{1}{2}$.
(1)求椭圆C的方程;
(2)求过点(1,0)且斜率为1的直线被椭圆C所截线段的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数$f(x)=\left\{\begin{array}{l}{2^x},x>0\\ x,x≤0\end{array}\right.$,f(1)+f(-1)=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,ABCD是边长2的菱形,其中∠DAB=60°,ED垂直平面ABCD,ED=1,EF∥BD且2EF=BD.
(1)求证:平面EAC⊥垂直平面BDEF;
(2)求几何体ABCDEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.“a>0,b>0”是“$ab<{({\frac{a+b}{2}})^2}$”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=|x2-2x-3|,g(x)=x+a.
(Ⅰ)求函数y=f(x)的单调递增区间;(只需写出结论即可)
(Ⅱ)设函数h(x)=f(x)-g(x),若h(x)在区间(-1,3)上有两个不同的零点,求实数a的取值范围;
(Ⅲ)若存在实数m∈[2,5],使得对于任意的x1∈[0,2],x2∈[-2,-1],都有f(x1)-m≥g(2${\;}^{{x}_{2}}$)-5成立,求实数a的最大值.

查看答案和解析>>

同步练习册答案