精英家教网 > 高中数学 > 题目详情
13.某校从参加高二年级期末考试的学生中抽出60名学生,将其数学成绩(均为整数)分成六段后画出如下频率分布直方图.观察图形的信息,回答下列问题:这次考试的中位数为73.3 (结果保留一位小数).

分析 根据频率分布直方图中,中位数两边面积相等,求出中位数即可.

解答 解:根据频率分布直方图知,前三个小矩形面积为
0.01×10+0.015×10+0.015×10=0.4,
由中位数要平分直方图的面积知,
中位数为70+$\frac{0.5-0.4}{0.03}$≈73.3.
故答案为:73.3.

点评 本题考查了根据频率分布直方图求中位数的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知右焦点为F2(c,0)的椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)过点(1,$\frac{3}{2}$),且椭圆C关于直线x=c对称的图形过坐标原点.
(1)求椭圆C的方程;
(2)过点($\frac{1}{2}$,0)作直线l与椭圆C交于E,F两点,线段EF的中点为M,点A是椭圆C的右顶点,求直线MA的斜率k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆C1:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{{b}^{2}}$=1(0<b<2)的离心率为$\frac{\sqrt{3}}{2}$,抛物线C2:x2=2py(p>0)的焦点是椭圆的顶点.
(1)求抛物线的方程;
(2)过点M(-1,0)作抛物线的切线l,求切线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若一个底面为正三角形、侧棱与底面垂直的棱柱的三视图如图所示,则这个棱柱的侧面积为72.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在某项体育比赛中,五位裁判为一选手打出的分数如下:
92     89       95     91       93
去掉一个最高分和一个最低分后,所剩数的平均值和方差分别为(  )
A.92,4B.93,5C.93,4D.92,$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若f(x)=$\frac{e^x}{x}$,f'(x)为f(x)的导函数,则f'(x)=(  )
A.f'(x)=$-\frac{e^x}{x}$B.f'(x)=$\frac{{x{e^x}-{e^x}}}{x^2}$C.f'(x)=$\frac{{x{e^x}+{e^x}}}{x^2}$D.f'(x)=$\frac{{x{e^x}-{e^x}}}{x}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设函数f(x)=lnx+ln(2-x)+ax(a>0).
(1)当a=1时,求f(x)的单调区间;
(2)若f(x)在(0,1]上的最大值为$\frac{2}{3}$,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数$f(x)=2{sin^2}x+\sqrt{3}sin2x+1$.求:
(1)f(x)的单调递增区间;
(2)f(x)在$[0,\frac{π}{2}]$上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.$sin\frac{11π}{3}$的值为(  )
A.$-\frac{{\sqrt{3}}}{2}$B.$-\frac{1}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$\frac{1}{2}$

查看答案和解析>>

同步练习册答案