精英家教网 > 高中数学 > 题目详情

【题目】某公司生产甲、乙两种产品所得利润分别为(万元),它们与投入资金(万元)的关系有经验公式.今将120万元资金投入生产甲、乙两种产品,并要求对甲、乙两种产品的投资金额都不低于20万元.

(Ⅰ)设对乙产品投入资金万元,求总利润(万元)关于的函数关系式及其定义域;

(Ⅱ)如何分配使用资金,才能使所得总利润最大?最大利润为多少?

【答案】(Ⅰ); (Ⅱ)当对甲产品投入资金84万元,对乙产品投入资金万元时,所得总利润最大,最大利润为71万元.

【解析】

(Ⅰ)由题得,再求函数的定义域;(Ⅱ)令,则,则原函数化为关于的函数

再利用二次函数求最大利润.

(Ⅰ)对乙产品投入资金万元,则对甲产品投入资万元;

所以,

,解得,所以其定义域为.

(Ⅱ)令,则,则原函数化为关于的函数 ,

所以当,即时,(万元),

答:当对甲产品投入资金84万元,对乙产品投入资金万元时,所得总利润最大,最大利润为71万元.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图1,∠ACB=45°,BC=3,过动点A作AD⊥BC,垂足D在线段BC上且异于点B,连接AB,沿AD将△ABD折起,使∠BDC=90°(如图2所示),

(1)当BD的长为多少时,三棱锥A﹣BCD的体积最大;
(2)当三棱锥A﹣BCD的体积最大时,设点E,M分别为棱BC,AC的中点,试在棱CD上确定一点N,使得EN⊥BM,并求EN与平面BMN所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个酒杯的轴截面是一条抛物线的一部分,它的方程是x2=2y,y∈[0,10],在杯内放入一个清洁球,要求清洁球能擦净酒杯的最底部(如图),则清洁球的最大半径为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,F是抛物线C:x2=2py(p>0)的焦点,M是抛物线C上位于第一象限内的任意一点,过M,F,O三点的圆的圆心为Q,点Q到抛物线C的准线的距离为
(1)求抛物线C的方程;
(2)是否存在点M,使得直线MQ与抛物线C相切于点M?若存在,求出点M的坐标;若不存在,说明理由;
(3)若点M的横坐标为 ,直线l:y=kx+ 与抛物线C有两个不同的交点A,B,l与圆Q有两个不同的交点D,E,求当 ≤k≤2时,|AB|2+|DE|2的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的六面体中,面是边长为2的正方形,面是直角梯形,.

(1)求证:平面

(2)若二面角为60°,求直线和平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数在区间上的最小值记为

1)当时,求函数在区间上的值域;

2)求的函数表达式;

3)求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程是为参数),以该直角坐标系的原点为极点, 轴的正半轴为极轴建立极坐标系,直线的极坐标方程为.

(1)写出曲线的普通方程和直线的直角坐标方程;

(2)设点,直线与曲线相交于两点,且,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在边长是2的正方体ABCD﹣A1B1C1D1中,E,F分别为AB,A1C的中点.应用空间向量方法求解下列问题.

(1)求EF的长
(2)证明:EF∥平面AA1D1D;
(3)证明:EF⊥平面A1CD.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱的底面是边长为2的正三角形且侧棱垂直于底面,侧棱长是的中点.

(1)求证:平面

(2)求二面角的大小;

查看答案和解析>>

同步练习册答案