精英家教网 > 高中数学 > 题目详情
如图,在四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=900

(1)求证:PC⊥BC;
(2)求点A到平面PBC的距离.
(1)见试题解析;(2).

试题分析:(1)要证两直线垂直,一般通过证明其中一条直线垂直于过另一条直线的平面,这里观察已知,有PD⊥平面ABCD,则有PD⊥BC,又BC⊥CD,显然就有BC⊥平面PCD,问题得证;(2)要求点A到平面PBC的距离,由于三棱锥P-ABC的体积容易求出(底面是三角形ABC,高是PD),故可用体积法求点A到平面PBC的距离,见解法二.当然题中由于,故A到平面PBC的距离等于D到平面PBC的距离的2倍,从而可能先求点D到平面PBC的距离,此时直接作出垂线段即可,见解法一.
试题解析:(1)证明:因为PD⊥平面ABCD,BC平面ABCD,所以PD⊥BC.
由∠BCD=900,得CD⊥BC,
又PDDC=D,PD、DC平面PCD,
所以BC⊥平面PCD.
因为PC平面PCD,故PC⊥BC.
(2)(方法一)分别取AB、PC的中点E、F,连DE、DF,则:易证DE∥CB,DE∥平面PBC,点D、E到平面PBC的距离相等.又点A到平面PBC的距离等于E到平面PBC的距离的2倍.由(1)知:BC⊥平面PCD,所以平面PBC⊥平面PCD于PC,因为PD=DC,PF=FC,所以DF⊥PC,所以DF⊥平面PBC于F.易知DF=,故点A到平面PBC的距离等于

(方法二)体积法:连结AC.设点A到平面PBC的距离为h.
因为AB∥DC,∠BCD=900,所以∠ABC=900
从而AB=2,BC=1,得的面积
由PD⊥平面ABCD及PD=1,得三棱锥P-ABC的体积
因为PD⊥平面ABCD,DC平面ABCD,所以PD⊥DC.
又PD=DC=1,所以
由PC⊥BC,BC=1,得的面积
,得
故点A到平面PBC的距离等于
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥S-ABCD中,底面ABCD是矩形,SA底面ABCD,SA=AD,点M是SD的中点,ANSC且交SC于点N.

(Ⅰ)求证:SB∥平面ACM;
(Ⅱ)求证:平面SAC平面AMN.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱柱中,侧面均为正方形,∠,点是棱的中点.

(Ⅰ)求证:⊥平面
(Ⅱ)求证:平面
(Ⅲ)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在长方体,中,,点在棱AB上移动.

(Ⅰ)证明:
(Ⅱ)求点到平面的距离;
(Ⅲ)等于何值时,二面角的大小为

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱锥中,侧面与底面垂直, 分别是的中点,,,.

(1)若点在线段上,问:无论的何处,是否都有?请证明你的结论;
(2)求二面角的平面角的余弦.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知四棱锥P-ABCD,底面ABCD是、边长为的菱形,又,且PD=CD,点M、N分别是棱AD、PC的中点.

(1)证明:MB平面PAD;
(2)求点A到平面PMB的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,底面为菱形,的中点.

(1)若,求证:平面平面
(2)点在线段上,,若平面平面,且,求二面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图在四棱锥中,底面是边长为的正方形,侧面底面,且,设分别为的中点.

(1)求证://平面
(2)求证:面平面

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,底面为直角梯形的四棱锥中,AD∥BC,平面,BC=6.

(Ⅰ)求证:BD⊥平面PAC;
(Ⅱ)求二面角的余弦值.

查看答案和解析>>

同步练习册答案