精英家教网 > 高中数学 > 题目详情
如图,在长方体,中,,点在棱AB上移动.

(Ⅰ)证明:
(Ⅱ)求点到平面的距离;
(Ⅲ)等于何值时,二面角的大小为
(Ⅰ)见解析;(Ⅱ);(Ⅲ)二面角的大小为.

试题分析:(Ⅰ)建立空间直角坐标系,利用向量数量积为零证明即可;(Ⅱ)求出平面的法向量解答;(Ⅲ)设平面的法向量,利用空间向量解答即可.
试题解析:

为坐标原点,直线分别为轴,建立空间直角坐标系,设
    2分
(1)      4分
(2)因为的中点,则,从而,  5分
,设平面的法向量为,则也即
  6分
从而,   7分
所以点到平面的距离为    8分
(3)设平面的法向量,∴
 令,∴
依题意
(不合,舍去), 
.∴时,二面角的大小为.           12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,平面ABCD,底面ABCD是菱形,.

(1)求证:平面PAC;
(2)若,求所成角的余弦值;
(3)当平面PBC与平面PDC垂直时,求PA的长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

正方形ADEF与梯形ABCD所在平面互相垂直,,点M在线段EC上且不与E,C重合.

(Ⅰ)当点M是EC中点时,求证:平面ADEF;
(Ⅱ)当平面BDM与平面ABF所成锐二面角的余弦值为时,求三棱锥M BDE的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在直三棱柱中,,且中点.

(I)求证:平面
(Ⅱ)求证:平面.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

平行四边形中,,以为折线,把折起,使平面平面,连结.

(Ⅰ)求证:
(Ⅱ)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=900

(1)求证:PC⊥BC;
(2)求点A到平面PBC的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

为直线,是两个不同的平面,下列命题中正确的是(  )
A.若,,则B.若,,则
C.若,,则D.若,,则

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,PA垂直于圆O所在的平面,AB是圆O的直径,C是圆O上的一点,E, F分别是点A在P B, P C上的射影,给出下列结论:
;②;③;④.正确命题的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,在正方形SG1G2G3中,E,F分别是G1G2及G2G3的中点,D是EF的中点,现在沿SE,SF及EF把这个正方形折成一个四面体,使G1,G2,G3三点重合,重合后的点记为G,则在四面体S-EFG中必有(  )
A.SG⊥△EFG所在平面B.SD⊥△EFG所在平面
C.GF⊥△SEF所在平面D.GD⊥△SEF所在平面

查看答案和解析>>

同步练习册答案