精英家教网 > 高中数学 > 题目详情
为直线,是两个不同的平面,下列命题中正确的是(  )
A.若,,则B.若,,则
C.若,,则D.若,,则
B

试题分析:A错,如当平行于的交线时,满足,,但相交;B正确,根据定理垂直于同一条直线的两个平面垂直;C错,因为,故在内存在一条直线平行。因为,所以,因为,所以;D错,还有可能
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图所示的四棱锥中,底面为菱形,平面 的中点,

求证:(I)平面; (II)平面⊥平面.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在长方体中,, E、 分别为的中点.

(1)求证:平面
(2)求证:平面

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在四棱锥P﹣ABCD中,PA⊥平面ABCD,△ABC是正三角形,AC与BD的交点M恰好是AC中点,又PA=AB=4,∠CDA=120°.

(1)求证:BD⊥PC;
(2)设E为PC的中点,点F在线段AB上,若直线EF∥平面PAD,求AF的长;
(3)求二面角A﹣PC﹣B的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图①,△BCD内接于直角梯形,A1D∥A2A3,A1A2⊥A2A3,A1D=10,A1A2=8,沿△BCD三边将△A1BD、△A2BC、△A3CD翻折上去,恰好形成一个三棱锥ABCD,如图②.

(1)求证:AB⊥CD;
(2)求直线BD和平面ACD所成的角的正切值;
(3)求四面体的体积。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥S-ABCD中,底面ABCD是矩形,SA底面ABCD,SA=AD,点M是SD的中点,ANSC且交SC于点N.

(Ⅰ)求证:SB∥平面ACM;
(Ⅱ)求证:平面SAC平面AMN.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图是一个斜三棱柱,已知、平面平面,又分别是的中点.

(1)求证:∥平面; (2)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在长方体,中,,点在棱AB上移动.

(Ⅰ)证明:
(Ⅱ)求点到平面的距离;
(Ⅲ)等于何值时,二面角的大小为

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图1所示,正△ABC中,CD是AB边上的高, E、F分别是AC、BC的中点.现将△ACD沿CD折起,使平面平面BCD(如图2),则下列结论中不正确的是(  )

A.AB//平面DEF             B.CD⊥平面ABD
C.EF⊥平面ACD             D.V三棱锥C—ABD=4V三棱锥C—DEF

查看答案和解析>>

同步练习册答案