精英家教网 > 高中数学 > 题目详情
在长方体中,, E、 分别为的中点.

(1)求证:平面
(2)求证:平面
(1)参考解析;(2)参考解析

试题分析:(1)线面垂直的证明关键是要找到平面内两条相交直线与该直线平行.其中BC⊥DF较易,在通过所给的条件说明DF⊥FC.即可得所要证的结论.
(2)连结AC与DB交于点O.通过直线可得四边形EAOF为平行四边形所以可得AE//OF即可证得直线以平面的平行.本小题主要就是考查线面的关系,通过相应的判断定理,结合具体的图形即可得到所求的结论.
试题解析:在长方体中,分别为的中点.
(1)证:∵BC⊥面DCC1D1.∴BC⊥DF.∵矩形DCC1D1中,DC=2a,DD1=CC1=a.∴DF=FC=∴DF2+FC2=DC2
∴DF⊥FC.∵BC∩FC=C.∴DF⊥面BCF
(2) 证:连结AC交BD于O,连结FO,EF .∵.∴.∴四边形EAOF为平行四边形
∴AE//OF. ∵AE面BDF. OF面BD.∴AE//面BDF
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P-ABCD中,底面为直角梯形,垂直于底面ABCD,PA=AD=AB=2BC=2,M,N分别为PC,PB的中点.

(Ⅰ)求证:PB⊥DM;
(Ⅱ)求点B到平面PAC的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,长方体中,,点的中点.

(1)求证:直线平面
(2)求证:平面平面
(3)求与平面所成的角大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,正方形所在平面与圆所在的平面相交于,线段为圆的弦,垂直于圆所在的平面,垂足为圆上异于的点,设正方形的边长为,且.

(1)求证:平面平面
(2)若异面直线所成的角为与底面所成角为,二面角所成角为,求证

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,平面ABCD,底面ABCD是菱形,.

(1)求证:平面PAC;
(2)若,求所成角的余弦值;
(3)当平面PBC与平面PDC垂直时,求PA的长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是两条不同直线,是两个不同的平面,下列命题正确的是(     )
A.B.,则
C.,则D.,则

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列命题中假命题是(     )
A.垂直于同一条直线的两条直线相互垂直
B.若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行
C.若一个平面经过另一个平面的垂线,那么这两个平面相互垂直
D.若一个平面内的两条相交直线与另一个平面内的相交直线分别平行,那么这两个平面相互平行

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知下列四个命题,其中真命题的序号是(    )
① 若一条直线垂直于一个平面内无数条直线,则这条直线与这个平面垂直;
② 若一条直线平行于一个平面,则垂直于这条直线的直线必垂直于这个平面;
③ 若一条直线平行一个平面,另一条直线垂直这个平面,则这两条直线垂直;
④ 若两条直线垂直,则过其中一条直线有唯一一个平面与另外一条直线垂直;
A.①②B.②③C.②④D.③④

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

为直线,是两个不同的平面,下列命题中正确的是(  )
A.若,,则B.若,,则
C.若,,则D.若,,则

查看答案和解析>>

同步练习册答案