精英家教网 > 高中数学 > 题目详情
如图,正方形所在平面与圆所在的平面相交于,线段为圆的弦,垂直于圆所在的平面,垂足为圆上异于的点,设正方形的边长为,且.

(1)求证:平面平面
(2)若异面直线所成的角为与底面所成角为,二面角所成角为,求证
(1)详见解析;(2)详见解析.

试题分析:(1)证明平面平面,即证明平面,转化为证明直线与平面内的两条相交直线垂直;(2)立体几何中求空间角的方法有两种,一是常规法,找出(或作出)适合题意的角;证明找出的角符合对应角的要求;求出相关角的大小(或三角函数值).二是用向量法,即先确定两个向量(直线的方向向量或平面的法向量)求两个向量夹角的余弦值,注意确定所求的夹角与向量夹角的关系,最后得出所求的角或角的三角函数值.
试题解析:(1)所在的平面,在圆所在的平面上,
又在正方形中,平面
平面平面平面.
(2)平面平面,即为圆的直径,
,且
以点为坐标原点,分别以轴、轴,以垂直于底面的直线为轴,建立空间直角坐标系,则


由此得
设平面的一个法向量,则,即
,则,又平面的一个法向量为

于是,即.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在正三棱柱中,分别为的中点.

(1)求证:平面
(2)求证:平面平面.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在长方体中,, E、 分别为的中点.

(1)求证:平面
(2)求证:平面

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在四棱锥P﹣ABCD中,PA⊥平面ABCD,△ABC是正三角形,AC与BD的交点M恰好是AC中点,又PA=AB=4,∠CDA=120°.

(1)求证:BD⊥PC;
(2)设E为PC的中点,点F在线段AB上,若直线EF∥平面PAD,求AF的长;
(3)求二面角A﹣PC﹣B的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图①,△BCD内接于直角梯形,A1D∥A2A3,A1A2⊥A2A3,A1D=10,A1A2=8,沿△BCD三边将△A1BD、△A2BC、△A3CD翻折上去,恰好形成一个三棱锥ABCD,如图②.

(1)求证:AB⊥CD;
(2)求直线BD和平面ACD所成的角的正切值;
(3)求四面体的体积。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥S-ABCD中,底面ABCD是矩形,SA底面ABCD,SA=AD,点M是SD的中点,ANSC且交SC于点N.

(Ⅰ)求证:SB∥平面ACM;
(Ⅱ)求证:平面SAC平面AMN.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱柱中,侧面均为正方形,∠,点是棱的中点.

(Ⅰ)求证:⊥平面
(Ⅱ)求证:平面
(Ⅲ)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列命题中,错误的是 (      )
A.一条直线与两个平行平面中的一个相交,则必与另一个平面相交
B.平行于同一平面的两个不同平面平行
C.如果平面不垂直平面,那么平面内一定不存在直线垂直于平面
D.若直线不平行平面,则在平面内不存在与平行的直线

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知平面外不共线的三点α的距离都相等,则正确的结论是(     )
A.平面必平行于
B.平面必与相交
C.平面必不垂直于
D.存在△的一条中位线平行于或在

查看答案和解析>>

同步练习册答案