精英家教网 > 高中数学 > 题目详情
如图,在正三棱柱中,分别为的中点.

(1)求证:平面
(2)求证:平面平面.
(1)详见解析;(2)详见解析.

试题分析:(1)要证线面平行,需有线线平行.由分别为的中点,想到取的中点;证就成为解题方向,这可利用平行四边形来证明.在由线线平行证线面平行时,需完整表示定理条件,尤其是线在面外这一条件;(2)要证面面垂直,需有线面垂直.由正三棱柱性质易得底面侧面,从而侧面,而,因此有线面垂直:.在面面垂直与线面垂直的转化过程中,要注意充分应用几何体及平面几何中的垂直条件.
试题解析:(1)连于点中点,
中点,
四边形是平行四边形,               4分
,又平面平面平面.  7分
(2)由(1)知中点,所以,所以,  9分
又因为底面,而底面,所以
则由,得,而平面,且
所以,                               12分
平面,所以平面平面.         14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,是正方形,平面分别是的中点.

(1)在线段上确定一点,使平面,并给出证明;
(2)证明平面平面,并求出到平面的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P-ABCD中,底面为直角梯形,垂直于底面ABCD,PA=AD=AB=2BC=2,M,N分别为PC,PB的中点.

(Ⅰ)求证:PB⊥DM;
(Ⅱ)求点B到平面PAC的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在如图所示的多面体中,

(Ⅰ)求证:
(Ⅱ)求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,边长为4的正方形ABCD与矩形ABEF所在平面互相垂直,M,N分别为AE,BC的中点,AF=3.

(I)求证:DA⊥平面ABEF;
(Ⅱ)求证:MN∥平面CDFE;
(Ⅲ)在线段FE上是否存在一点P,使得AP⊥MN? 若存在,求出FP的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知为不在同一直线上的三点,且.

(1)求证:平面//平面
(2)若平面,且,求证:平面
(3)在(2)的条件下,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,长方体中,,点的中点.

(1)求证:直线平面
(2)求证:平面平面
(3)求与平面所成的角大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,正方形所在平面与圆所在的平面相交于,线段为圆的弦,垂直于圆所在的平面,垂足为圆上异于的点,设正方形的边长为,且.

(1)求证:平面平面
(2)若异面直线所成的角为与底面所成角为,二面角所成角为,求证

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知正方体,点分别是棱上的动点,观察直线

给出下列结论:
①对于任意点,存在点,使得;②对于任意点,存在点,使得
③对于任意点,存在点,使得;④对于任意点,存在点,使得
其中,所有正确结论的序号是__________.

查看答案和解析>>

同步练习册答案