精英家教网 > 高中数学 > 题目详情

f(x)是y=2-x2和y=x两个函数中较小者,则f(x)的最大值是________.

1
分析:先根据题目条件得到函数:f(x)=,然后按照每一段求出最大值,得出结论.
解答:解:根据题意有:2-x2=x,
∴x2+x-2=0,
即(x+2)(x-1)=0,
解得x=1,x=-2.
∴f(x)=
当x>1或x<-2时,f(x)≤1.
当-2≤x≤1时,f(x)≤1.
综上:f(x)的最大值是1.
故答案为:1.
点评:本题考查二次函数的性质,要注意构造函数,以及考查分段函数的最值,属中档题.解题时要认真审题,仔细解答.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=(1+x)t-1的定义域为(-1,+∞),其中实数t满足t≠0且t≠1.直线l:y=g(x)是f(x)的图象在x=0处的切线.
(1)求l的方程:y=g(x);
(2)若f(x)≥g(x)恒成立,试确定t的取值范围;
(3)若a1,a2∈(0,1),求证:
a
a1
1
+
a
a2
2
a
a2
1
+
a
a1
2

注:当α为实数时,有求导公式(xα)′=αxα-1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•黄埔区一模)对于函数y=f(x)与常数a,b,若f(2x)=af(x)+b恒成立,则称(a,b)为函数f(x)的一个“P数对”;若f(2x)≥af(x)+b恒成立,则称(a,b)为函数f(x)的一个“类P数对”.设函数f(x)的定义域为R+,且f(1)=3.
(1)若(1,1)是f(x)的一个“P数对”,求f(2n)(n∈N*);
(2)若(-2,0)是f(x)的一个“P数对”,且当x∈[1,2)时f(x)=k-|2x-3|,求f(x)在区间[1,2n)(n∈N*)上的最大值与最小值;
(3)若f(x)是增函数,且(2,-2)是f(x)的一个“类P数对”,试比较下列各组中两个式子的大小,并说明理由.
①f(2-n)与2-n+2(n∈N*);
②f(x)与2x+2(x∈(0,1]).

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中
①对于每一个实数x,f(x)是y=2-x2和y=x这两个函数中的较小者,则f(x)的最大值是1.
②已知x1是方程x+lgx=3的根,x2是方程x+10x=3的根,则x1+x2=3.
③函数f(x)=ax2+bx+3a+b是偶函数,其定义域为[a-1,2a],则f(x)的图象是以(0,1)为顶点,开口向下的抛物线.
④若集合P={x|x=3m+1,m∈N+},Q={x|x=5n+2,n∈N+},则P∩Q={x|x=15m-8,m∈N+}
⑤若函数f(x)在(-∞,+∞)上递增,且a+b≥0,则f(a)+f(b)≥f(-a)+f(-b).
其中正确的命题的序号是
①②④⑤
①②④⑤

查看答案和解析>>

科目:高中数学 来源:2010-2011学年广东省茂名市高州市长坡中学高三(上)第二次月考数学试卷(理科)(解析版) 题型:填空题

下列命题中
①对于每一个实数x,f(x)是y=2-x2和y=x这两个函数中的较小者,则f(x)的最大值是1.
②已知x1是方程x+lgx=3的根,x2是方程x+10x=3的根,则x1+x2=3.
③函数f(x)=ax2+bx+3a+b是偶函数,其定义域为[a-1,2a],则f(x)的图象是以(0,1)为顶点,开口向下的抛物线.
④若集合P={x|x=3m+1,m∈N+},Q={x|x=5n+2,n∈N+},则P∩Q={x|x=15m-8,m∈N+}
⑤若函数f(x)在(-∞,+∞)上递增,且a+b≥0,则f(a)+f(b)≥f(-a)+f(-b).
其中正确的命题的序号是   

查看答案和解析>>

科目:高中数学 来源:黄埔区一模 题型:解答题

对于函数y=f(x)与常数a,b,若f(2x)=af(x)+b恒成立,则称(a,b)为函数f(x)的一个“P数对”;若f(2x)≥af(x)+b恒成立,则称(a,b)为函数f(x)的一个“类P数对”.设函数f(x)的定义域为R+,且f(1)=3.
(1)若(1,1)是f(x)的一个“P数对”,求f(2n)(n∈N*);
(2)若(-2,0)是f(x)的一个“P数对”,且当x∈[1,2)时f(x)=k-|2x-3|,求f(x)在区间[1,2n)(n∈N*)上的最大值与最小值;
(3)若f(x)是增函数,且(2,-2)是f(x)的一个“类P数对”,试比较下列各组中两个式子的大小,并说明理由.
①f(2-n)与2-n+2(n∈N*);
②f(x)与2x+2(x∈(0,1]).

查看答案和解析>>

同步练习册答案