精英家教网 > 高中数学 > 题目详情
11.在等比数列{an}中,已知a1=2,且a2,a1+a3,a4成等差数列.
(Ⅰ)求数列{an}的通项公式an
(Ⅱ)设数列{an2-an}的前n项和为Sn,记bn=$\frac{{2}^{n}}{{S}_{n}}$,求证:数列{bn}的前n项和Tn<$\frac{3}{2}$.

分析 (Ⅰ)利用a2,a1+a3,a4成等差数列及a1=2,计算即得结论;
(Ⅱ)通过Sn=(a12+a22+a32+…+an2)-(a1+a2+a32+…+an)可得bn的表达式,分离分母、并项相加即得结论.

解答 (Ⅰ)解:设等比数列的公比为q,由已知得:2(a1+a3)=a2+a4
即2(a1+a1q2)=a1q+a1q3,解得q=2,
又∵a1=2,∴an=a1qn-1=2n
(Ⅱ)证明:由(Ⅰ)得:Sn=(a12+a22+a32+…+an2)-(a1+a2+a32+…+an
=(4+42+43+…+4n)-(2+22+23+…+2n
=$\frac{4(1-{4}^{n})}{1-4}$-$\frac{2(1-{2}^{n})}{1-2}$
=$\frac{2}{3}$(2n-1)(2n+1-1),
∴bn=$\frac{{2}^{n}}{{S}_{n}}$=$\frac{3}{2}$($\frac{1}{{2}^{n}-1}$-$\frac{1}{{2}^{n+1}-1}$),
∴Tn=$\frac{3}{2}$($\frac{1}{{2}^{1}-1}$-$\frac{1}{{2}^{2}-1}$+$\frac{1}{{2}^{2}-1}$-$\frac{1}{{2}^{3}-1}$+…+$\frac{1}{{2}^{n}-1}$-$\frac{1}{{2}^{n+1}-1}$)
=$\frac{3}{2}$($\frac{1}{{2}^{1}-1}$-$\frac{1}{{2}^{n+1}-1}$)
=$\frac{3}{2}$(1-$\frac{1}{{2}^{n+1}-1}$)
<$\frac{3}{2}$.

点评 本题考查求数列的通项和前n项和的取值范围,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知a∈R,f(x)=x|x-a|.
(1)判断f(x)的奇偶性并证明;
(2)当a>0时,求f(x)在[0,1]的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数y=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)在一个周期内的图象如图所示,M、N分别是这段图象的最高点和最低点,且$\overrightarrow{OM}•\overrightarrow{ON}$=0(O为坐标原点),则A=$\frac{\sqrt{7}}{12}$π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知f(x)=alnx+$\frac{1}{x}$+3x-4.
(1)当a=-2时,求f(x)的单调区间;
(2)若x≥1时,f(x)≥0恒成立,求实数a的取值范围;
(3)求证:$\frac{2}{4×{1}^{2}-1}$+$\frac{4}{4×{2}^{2}-1}$+$\frac{4}{4×{3}^{2}-1}$+…+$\frac{n+1}{4×{n}^{2}-1}$>$\frac{1}{4}$ln(2n+1)对一切正整数n均成立.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在平面直角坐标系xOy中,已知A为椭圆$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{5}$=1上的动点,MN为圆(x-1)2+y2=1的一条直径,则|$\overrightarrow{AM}$•$\overrightarrow{AN}$|的最大值为15.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在以O为极点的极坐标系中,直线ρcosθ+$\sqrt{3}$ρsinθ=4$\sqrt{3}$与圆$\left\{\begin{array}{l}{x=2cosθ}\\{y=2+2sinθ}\end{array}\right.$(θ为参数)交于M,N两点,则线段MN的长度为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.某市对汽车限购政策进行了调查,在参加调查的300名有车人中116名持反对意见,200名无车人中有121名持反对意见,在运用这些数据说明“拥有车辆”与“反对汽车限购政策”是否有关系时,最有说服力的方法是(  )
A.平均数与方差B.回归直线方程C.独立性检验D.概率

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知M=$\int_0^1{\frac{1}{x+1}dx,N=\int_0^{\frac{π}{2}}{cosxdx}}$,由图示程序框图输出的S为(  )
A.1B.ln2C.$\frac{π}{2}$D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知集合M={1,2,3,5,7},N={x|x=2k-1,k∈M},则M∩N=(  )
A.{1,2,3}B.{1,3,5}C.{2,3,5}D.{1,3,5,7}

查看答案和解析>>

同步练习册答案