精英家教网 > 高中数学 > 题目详情
1.已知集合M={1,2,3,5,7},N={x|x=2k-1,k∈M},则M∩N=(  )
A.{1,2,3}B.{1,3,5}C.{2,3,5}D.{1,3,5,7}

分析 根据集合的基本运算进行求解即可.

解答 解:∵M={1,2,3,5,7},
∴N={x|x=2k-1,k∈M}={1,3,5,9,13},
则M∩N={1,3,5},
故选:B

点评 本题主要考查集合的基本运算,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.在等比数列{an}中,已知a1=2,且a2,a1+a3,a4成等差数列.
(Ⅰ)求数列{an}的通项公式an
(Ⅱ)设数列{an2-an}的前n项和为Sn,记bn=$\frac{{2}^{n}}{{S}_{n}}$,求证:数列{bn}的前n项和Tn<$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.M为抛物线y2=8x上一点,F为抛物线的焦点,∠MFO=120°(O为坐标原点),N(-2,0),则直线MN的斜率为(  )
A.$±\frac{1}{3}$B.±$\frac{1}{2}$C.±$\frac{\sqrt{3}}{2}$D.±$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知点A(-1,1),B(1,2),C(-2,-1),D(3,4),则向量$\overrightarrow{AB}$在$\overrightarrow{CD}$方向上的投影为(  )
A.$-\frac{{3\sqrt{15}}}{2}$B.$\frac{{3\sqrt{15}}}{2}$C.$-\frac{{3\sqrt{2}}}{2}$D.$\frac{{3\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在△ABC中,已知角A,B,C的对边分别为a,b,c,且$\frac{sinA-sinC}{b-c}$=$\frac{sinB}{a+c}$,则函数f(x)=cos2($\frac{x}{2}$+A)-sin2($\frac{x}{2}$-A)在[-$\frac{π}{2}$,$\frac{3}{2}$π]上的单调递增区间是[0,π].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.将5本不同的书摆成一排,若书甲与书乙必须相邻,而书丙与书丁不能相邻,则不同的摆法种数为24.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知正四棱锥的底面边长是$3\sqrt{2}$,侧棱长为5,则该正四棱锥的体积为24.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=ln(2ax+1)+$\frac{{x}^{3}}{3}$-x2-2ax(a∈R).
(1)若a=0,判断f(x)的单调性.
(2)若y=f(x)在[4,+∞)上为增函数,求实数a的取值范围;
(3)当a=-$\frac{1}{2}$时,方程f(1-x)=$\frac{(1-x)^{3}}{3}$+$\frac{b}{x}$有实根,求实数b的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,矩形ABCD中,AB=3,BC=4.E、F分别在线段BC和AD上,EF∥AB,将矩形ABEF沿EF折起.记折起后的矩形为MNEF,且平面MNEF⊥平面ECDF.

(Ⅰ)求证:NC∥平面MFD;
(Ⅱ)求四面体NFEC体积的最大值,并求此时D点到平面CFN的距离.

查看答案和解析>>

同步练习册答案