【题目】设函数f(x)在R上存在导数f'(x),x∈R,有f(-x)+f(x)=x2,在(0,+∞)上,f'(x)<x,若f(6-m)-f(m)-18+6m≥0,则实数m的取值范围是______.
科目:高中数学 来源: 题型:
【题目】如图,已知四棱锥的底面是边长为的菱形,,点是棱的中点,,点在平面的射影为,为棱上一点,
(Ⅰ)求证:平面平面;
(Ⅱ)若为棱的中点,,求直线与平面所成角的正弦值。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系(),点为曲线上的动点,点在线段的延长线上,且满足,点的轨迹为。
(Ⅰ)求的极坐标方程;
(Ⅱ)设点的极坐标为,求面积的最小值。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2+ax+b,g(x)=ex(cx+d),若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2.
(1)求a,b,c,d的值;
(2)若x≥-2时,恒有f(x)≤kg(x),求k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在四棱锥P-ABCD中,底面ABCD是边长为2的菱形,侧面底面ABCD,,,E,Q分别是BC和PC的中点.
(I)求直线BQ与平面PAB所成角的正弦值;
(Ⅱ)求二面角E-DQ-P的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲,乙两人进行定点投篮活动,已知他们每投篮一次投中的概率分别是和,每次投篮相互独立互不影响.
(Ⅰ)甲乙各投篮一次,记“至少有一人投中”为事件A,求事件A发生的概率;
(Ⅱ)甲乙各投篮一次,记两人投中次数的和为X,求随机变量X的分布列及数学期望;
(Ⅲ)甲投篮5次,投中次数为ξ,求ξ=2的概率和随机变量ξ的数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com