【题目】在直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系(),点为曲线上的动点,点在线段的延长线上,且满足,点的轨迹为。
(Ⅰ)求的极坐标方程;
(Ⅱ)设点的极坐标为,求面积的最小值。
【答案】(Ⅰ) :;:(Ⅱ)2
【解析】
(1)由曲线C1的参数方程能求出曲线C1的普通方程,由此能求出曲线C的极坐标方程;设点B的极坐标为(ρ,θ),点A的极坐标为(ρ0,θ0),则|OB|=ρ,|OA|=ρ0,ρ0=2cosθ0,θ=θ0,从而ρρ0=8,由此能求出C2的极坐标方程.
(2)由|OC|=2,S△ABC=S△OBC﹣S△OAC|OC||ρBcosθ﹣ρAcosθ|=|4﹣2cos2θ|,由此能求出S△ABC的最小值.
(1)∵曲线C1的参数方程为(α为参数),
∴曲线C1的普通方程为x2+y2﹣2x=0,
∴曲线C的极坐标方程为ρ=2cosθ,
设点B的极坐标为(ρ,θ),点A的极坐标为(ρ0,θ0),
则|OB|=ρ,|OA|=ρ0,ρ0=2cosθ0,θ=θ0,
∵|OA||OB|=8,∴ρρ0=8,
∴,ρcosθ=4,
∴C2的极坐标方程为ρcosθ=4.
(2)由题设知|OC|=2,
S△ABC=S△OBC﹣S△OAC|OC||ρBcosθ﹣ρAcosθ|=|4﹣2cos2θ|,
当θ=0时,S△ABC取得最小值为2.
科目:高中数学 来源: 题型:
【题目】《九章算术》卷第五《商功》中,有“贾令刍童,上广一尺,袤二尺,下广三尺,袤四尺,高一尺。”,意思是:“假设一个刍童,上底面宽1尺,长2尺;下底面宽3尺,长4尺,高1尺(如图)。”(注:刍童为上下底面为相互平行的不相似长方形,两底面的中心连线与底面垂直的几何体),若该几何体所有顶点在一球体的表面上,则该球体的表面积为( )
A. 平方尺 B. 平方尺 C. 平方尺 D. 平方尺
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)在R上存在导数f'(x),x∈R,有f(-x)+f(x)=x2,在(0,+∞)上,f'(x)<x,若f(6-m)-f(m)-18+6m≥0,则实数m的取值范围是______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数有如下性质:如果常数,那么该函数在上是减函数,在上是增函数.
(1)已知,利用上述性质,求函数的单调区间和值域;
(2)对于(1)中的函数和函数,若对任意,总存在,使得成立,求实数的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某大学为了解学生对学校食堂服务的满意度,随机调查了50名男生和50名女生,每位学生对食堂的服务给出满意或不满意的评价,得到如图所示的列联表.经计算的观测值,则可以推断出( )
满意 | 不满意 | |
男 | 30 | 20 |
女 | 40 | 10 |
0.100 | 0.050 | 0.010 | |
2.706 | 3.841 | 6.635 |
A.该学校男生对食堂服务满意的概率的估计值为
B.调研结果显示,该学校男生比女生对食堂服务更满意
C.有95%的把握认为男、女生对该食堂服务的评价有差异
D.有99%的把握认为男、女生对该食堂服务的评价有差异
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】每年9月第三个公休日是全国科普日.某校为迎接2019年全国科普日,组织了科普知识竞答活动,要求每位参赛选手从4道“生态环保题”和2道“智慧生活题”中任选3道作答(每道题被选中的概率相等),设随机变量ξ表示某选手所选3道题中“智慧生活题”的个数.
(Ⅰ)求该选手恰好选中一道“智慧生活题”的概率;
(Ⅱ)求随机变量ξ的分布列及数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com