精英家教网 > 高中数学 > 题目详情

【题目】某大学为了解学生对学校食堂服务的满意度,随机调查了50名男生和50名女生,每位学生对食堂的服务给出满意或不满意的评价,得到如图所示的列联表.经计算的观测值,则可以推断出(

满意

不满意

30

20

40

10

0.100

0.050

0.010

2.706

3.841

6.635

A.该学校男生对食堂服务满意的概率的估计值为

B.调研结果显示,该学校男生比女生对食堂服务更满意

C.有95%的把握认为男、女生对该食堂服务的评价有差异

D.有99%的把握认为男、女生对该食堂服务的评价有差异

【答案】AC

【解析】

根据表格中的数据可求得男、女生对食堂服务满意的概率的估计值,根据,可判断CD选项

对于选项A,该学校男生对食堂服务满意的概率的估计值为,A正确;

对于选项B,该学校女生对食堂服务满意的概率的估计值为,B错误;

因为,所以有的把握认为男、女生对该食堂服务的评价有差异,C正确,D错误

故选:AC

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系内,已知点,圆的方程为,点是圆上任意一点,线段的垂直平分线和直线相交于点.

1)当点在圆上运动时,求点的轨迹方程;

2)过点能否作一条直线,与点的轨迹交于两点,且点为线段的中点?若存在,求出直线的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系(),点为曲线上的动点,点在线段的延长线上,且满足,点的轨迹为

(Ⅰ)求的极坐标方程;

(Ⅱ)设点的极坐标为,求面积的最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若是函数的极值点,求曲线在点处的切线方程;

2)求函数的单调区间;

3)已知,当,试比较的大小,并给予证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为了了解本公司职员的早餐费用情况,抽样调査了100位职员的早餐日平均费用(单位:元),得到如图所示的频率分布直方图,图中标注的数字模糊不清.

1)试根据频率分布直方图求的值,并估计该公司职员早餐日平均费用的众数;

2) 已知该公司有1000名职员,试估计该公司有多少职员早餐日平均费用多于8元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥P-ABCD中,底面ABCD是边长为2的菱形,侧面底面ABCDEQ分别是BCPC的中点.

I)求直线BQ与平面PAB所成角的正弦值;

(Ⅱ)求二面角E-DQ-P的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为了确定下一年度投入某种产品的宣传费用,需了解年宣传费(单位:万元)对年销量(单位:吨)和年利润(单位:万元)的影响对近6年宣传费和年销量的数据做了初步统计,得到如下数据:

年份

2013

2014

2015

2016

2017

2018

年宣传费(万元)

38

48

58

68

78

88

年销售量(吨)

16.8

18.8

20.7

22.4

24.0

25.5

经电脑模拟,发现年宣传费(万元)与年销售量(吨)之间近似满足关系式,两边取对数,即,令,即对上述数据作了初步处理,得到相关的值如下表:

75.3

24.6

18.3

101.4

1)从表中所给出的6年年销售量数据中任选2年做年销售量的调研,求所选数据中至多有一年年销售量低于21吨的概率.

2)根据所给数据,求关于的回归方程;

3)若生产该产品的固定成本为200(万元),且每生产1(吨)产品的生产成本为20(万元)(总成本=固定成本+生产成本+年宣传费),销售收入为(万元),假定该产品产销平衡(即生产的产品都能卖掉),2019年该公司计划投入108万元宣传费,你认为该决策合理吗?请说明理由.(其中为自然对数的底数,

附:对于一组数据,其回归直线中的斜率和截距的最小二乘估计分别为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】小明口袋中有3张10元,3张20元(因纸币有编号认定每张纸币不同),现从中掏出纸币超过45元的方法有_______种;若小明每次掏出纸币的概率是等可能的,不放回地掏出4张,刚好是50元的概率为_______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】市某机构为了调查该市市民对我国申办年足球世界杯的态度,随机选取了位市民进行调查,调查结果统计如下:

支持

不支持

合计

男性市民

女性市民

合计

(1)根据已知数据,把表格数据填写完整;

(2)利用(1)完成的表格数据回答下列问题:

(i)能否在犯错误的概率不超过的前提下认为支持申办足球世界杯与性别有关;

(ii)已知在被调查的支持申办足球世界杯的男性市民中有位退休老人,其中位是教师,现从这位退休老人中随机抽取人,求至多有位老师的概率.

附:,其中.

查看答案和解析>>

同步练习册答案