精英家教网 > 高中数学 > 题目详情
13.已知集合A={x||x-2|≤1},且A∩B=∅,则集合B可能是(  )
A.(-∞,-1)B.(1,2)C.{2,5}D.{x|x2≤1}

分析 根据交集的运算即可求出.

解答 解:∵集合A={x||x-2|≤1}=[1,3],由A∩B=∅,
则B⊆(-∞,1)∪(3,+∞),
故选:A

点评 本题考查了集合的交集的运算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.在△ABC中,角A,B,C的对边长分别为a,b,c,C=60°,c=4$\sqrt{3}$.
(1)若△ABC的面积为8$\sqrt{3}$,求a+b的值;
(2)若△ABC为锐角三角形,求a+b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知数列{an}是等差数列,若a2=2,a3=-4,则a5等于(  )
A.8B.-8C.16D.-16

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.计算题
(1)$\frac{1-2i}{3+4i}$
(2)设复数z满足i(z-4)=3+2i(i是虚数单位),求z.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.函数f(x)=$\frac{x+1}{x-a}$在区间[1,+∞)上单调递减,则实数a的取值范围为(-1,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在三棱柱ABC-A1B1C1中,AC=BC=2,∠ACB=120°,D为A1B1的中点.
(Ⅰ)证明:A1C∥平面BC1D;
(Ⅱ)若A1A=A1C,点A1在平面ABC的射影在AC上,且侧面A1ABB1的面积为$2\sqrt{3}$,求三棱锥A1-BC1D的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=x3-ax,g(x)=$\frac{1}{2}$x2-lnx-$\frac{5}{2}$.
(1)若f(x)和g(x)在同一点处有相同的极值,求实数a的值;
(2)对于一切x∈(0,+∞),有不等式f(x)≥2x•g(x)-x2+5x-3恒成立,求实数a的取值范围;
(3)设G(x)=$\frac{1}{2}$x2-$\frac{5}{2}$-g(x),求证:G(x)>$\frac{1}{{e}^{x}}$-$\frac{2}{ex}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.数列$(1+\frac{1}{2})$,$(2+\frac{2}{3})$,$(3+\frac{3}{4})$,$(4+\frac{4}{5})$…的一个通项n+$\frac{n}{n+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知双曲线${C_1}:\frac{x^2}{2}-{y^2}=1$与双曲线${C_2}:\frac{x^2}{2}-{y^2}=-1$,给出下列说法,其中错误的是(  )
A.它们的焦距相等B.它们的焦点在同一个圆上
C.它们的渐近线方程相同D.它们的离心率相等

查看答案和解析>>

同步练习册答案